Light is a critical determinant of plant shape by controlling branching patterns and bud burst in many species. To gain insight into how light induces bud burst, we investigated whether its inductive effect in rose was related to gibberellin (GA) biosynthesis. In axillary buds of beheaded plants subject to light, the expression of two GA biosynthesis genes (RoGA20ox and RoGA3ox) was promptly and strongly induced, while that of a GA-catabolism genes (RoGA2ox) was reduced.
View Article and Find Full Text PDFBud burst is a decisive process in plant architecture that requires light in Rosa sp. This light effect was correlated with stimulation of sugar transport and metabolism in favor of bud outgrowth. We investigated whether sugars could act as signaling entities in the light-mediated regulation of vacuolar invertases and bud burst.
View Article and Find Full Text PDFIn roses, light is a central environmental factor controlling bud break and involves a stimulation of sugar metabolism. Very little is known about the role of sucrose transporters in the bud break process and its regulation by light. In this study, we show that sugar promotes rose bud break and that bud break is accompanied by an import of sucrose.
View Article and Find Full Text PDFBud burst in certain species is conditioned by the luminous environment. With roses, the requirement for light is absolute, and darkness totally inhibits bud burst. Few studies have looked into understanding the action of light on the physiological bud burst processes.
View Article and Find Full Text PDFThe phloem unloading pathway remains unclear in fleshy fruits accumulating a high level of soluble sugars. A structural investigation in apple fruit (Malus domestica Borkh. cv Golden Delicious) showed that the sieve element-companion cell complex of the sepal bundles feeding the fruit flesh is symplasmically isolated over fruit development.
View Article and Find Full Text PDF