The pursuit of highly sensitive and specific cancer diagnostics based on cell-free (cf) nucleic acids isolated from minimally invasive liquid biopsies has been an area of intense research and commercial effort for at least two decades. Most of these tests detect cancer-specific mutations or epigenetic modifications on circulating DNA derived from tumor cells (ctDNA). Although recent FDA approvals of both single and multi-analyte liquid biopsy companion diagnostic assays are proof of the tremendous progress made in this domain, using ctDNA for the diagnosis of early-stage (stage I/II) cancers remains challenging due to several factors, such as low mutational allele frequency in circulation, overlapping profiles in genomic alterations among diverse cancers, and clonal hematopoiesis.
View Article and Find Full Text PDFOne goal of microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods the authors previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, the authors compared the relative performance of two total nucleic acid extraction protocols with the authors' previously benchmarked protocol.
View Article and Find Full Text PDFUnlabelled: One goal among microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods we previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, we compare the relative performance of two total nucleic acid extraction protocols and our previously benchmarked protocol.
View Article and Find Full Text PDFSystematic characterization of the cancer microbiome provides the opportunity to develop techniques that exploit non-human, microorganism-derived molecules in the diagnosis of a major human disease. Following recent demonstrations that some types of cancer show substantial microbial contributions, we re-examined whole-genome and whole-transcriptome sequencing studies in The Cancer Genome Atlas (TCGA) of 33 types of cancer from treatment-naive patients (a total of 18,116 samples) for microbial reads, and found unique microbial signatures in tissue and blood within and between most major types of cancer. These TCGA blood signatures remained predictive when applied to patients with stage Ia-IIc cancer and cancers lacking any genomic alterations currently measured on two commercial-grade cell-free tumour DNA platforms, despite the use of very stringent decontamination analyses that discarded up to 92.
View Article and Find Full Text PDFLifestyle factors, such as diet, strongly influence the structure, diversity, and composition of the microbiome. While we have witnessed over the last several years a resurgence of interest in fermented foods, no study has specifically explored the effects of their consumption on gut microbiota in large cohorts. To assess whether the consumption of fermented foods is associated with a systematic signal in the gut microbiome and metabolome, we used a multi-omic approach (16S rRNA amplicon sequencing, metagenomic sequencing, and untargeted mass spectrometry) to analyze stool samples from 6,811 individuals from the American Gut Project, including 115 individuals specifically recruited for their frequency of fermented food consumption for a targeted 4-week longitudinal study.
View Article and Find Full Text PDF