Geotrichum candidum is a ubiquitous yeast and an essential component in the production of many soft cheeses. We developed a multilocus sequence typing (MLST) scheme with five retained loci (NUP116, URA1, URA3, SAPT4 and PLB3) which were sufficiently divergent to distinguish 40 sequence types (STs) among the 67 G. candidum strains tested.
View Article and Find Full Text PDFThe evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota.
View Article and Find Full Text PDFAmong ascomycetous yeasts, the CTG clade is so-called because its constituent species translate CTG as serine instead of leucine. Though the biology of certain pathogenic species such as Candida albicans has been much studied, little is known about the life cycles of non-pathogen species of the CTG clade. Taking advantage of the recently obtained sequence of the biotechnological Millerozyma (Pichiasorbitophila) farinosa strain CBS 7064, we used MLST to better define phylogenic relationships between most of the Millerozyma farinosa strains available in public collections.
View Article and Find Full Text PDFPolyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages.
View Article and Find Full Text PDFSaccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
May 2009
The delineation of species among strains assigned to Debaryomyces hansenii was examined using a gene genealogies-based approach in order to compare spliceosomal intron sequences found in four housekeeping genes (ACT1, TUB2, RPL31 and RPL33). This revealed four distinct groups of strains containing, respectively, D. hansenii var.
View Article and Find Full Text PDF