Publications by authors named "Sandrine M Soh"

The ubiquitin proteasome system (UPS) is a protein degradation machinery that is crucial for cellular homeostasis in eukaryotes. Therefore, it is not surprising that the UPS coordinates almost all host cellular processes, including host-pathogen interactions. This protein degradation machinery acts predominantly by tagging substrate proteins designated for degradation with a ubiquitin molecule.

View Article and Find Full Text PDF

The causative factor of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously mutating. Interestingly, identified mutations mainly occur in the spike (S) protein which interacts with the ACE2 receptor and is cleaved via serine protease TMPRSS2. Some mutated strains are becoming dominant in various parts of the globe because of increased transmissibility as well as cell entry efficacy.

View Article and Find Full Text PDF

A new variant of SARS-CoV-2 B.1.351 lineage (first found in South Africa) has been raising global concern due to its harboring of multiple mutations in the spike that potentially increase transmissibility and yield resistance to neutralizing antibodies.

View Article and Find Full Text PDF

This study demonstrates the impact outer membrane permeability has on the power densities generated by E. coli-based microbial fuel cells with neutral red as the mediator, and how increasing the permeability improves the current generation. Experiments performed with several lipopolysaccharide (LPS) mutants (ΔwaaC, ΔwaaF and ΔwaaG) of E.

View Article and Find Full Text PDF

Mutations that shorten the lipopolysaccharide (LPS) in Escherichia coli were found to significantly increase the number of transformants after electroporation. The loss of the LPS outer core increased the number of transformants with plasmid pAmCyan (3.3 kb) from 5.

View Article and Find Full Text PDF

We evaluated the toxicity of surfactants against different predatory bacteria. Tests with Bdellovibrio bacteriovorus HD100 and SDS, an anionic surfactant, showed the predator was very sensitive; 0.02% SDS completely killed the predatory population (7-log loss; < 10 PFU/ml remaining) both when free-swimming or within the bdelloplast, i.

View Article and Find Full Text PDF