Publications by authors named "Sandrine Lecardeur"

DNA lesions inflicted by activation-induced deaminase (AID) instrumentally initiate the processes reshaping immunoglobulin genes in mature B-cells, from local somatic hypermutation (SHM) to junctions of distant breaks during class switch recombination (CSR). It remains incompletely understood how these divergent outcomes of AID attacks are differentially and temporally focused, with CSR strictly occurring in the Ig heavy chain (IgH) locus while SHM concentrates on rearranged V(D)J regions in the IgH and Ig light chain loci. In the IgH locus, disruption of either the 3'Regulatory Region (3'RR) super-enhancer or of switch (S) regions preceding constant genes, profoundly affects CSR.

View Article and Find Full Text PDF

Class switch recombination (CSR) changes antibody isotype by replacing Cμ constant exons with different constant exons located downstream on the immunoglobulin heavy () locus. During CSR, transcription through specific switch (S) regions and processing of non-coding germline transcripts (GLTs) are essential for the targeting of activation-induced cytidine deaminase (AID). While CSR to IgG1 is abolished in mice lacking an Iγ1 exon donor splice site (dss), many questions remain regarding the importance of I exon dss recognition in CSR.

View Article and Find Full Text PDF

Cis-regulatory elements feature clustered sites for transcription factors, defining core enhancers and have inter-species homology. The mouse IgH 3΄ regulatory region (3'RR), a major B-cell super-enhancer, consists of four of such core enhancers, scattered throughout more than 25 kb of packaging 'junk DNA', the sequence of which is not conserved but follows a unique palindromic architecture which is conserved in all mammalian species. The 3'RR promotes long-range interactions and potential IgH loops with upstream promoters, controlling class switch recombination (CSR) and somatic hypermutation (SHM).

View Article and Find Full Text PDF

Immunoglobulin heavy chain (IgH) alleles have ambivalent relationships: they feature both allelic exclusion, ensuring monoallelic expression of a single immunoglobulin (Ig) allele, and frequent inter-allelic class-switch recombination (CSR) reassembling genes from both alleles. The IgH locus 3' regulatory region (3'RR) includes several transcriptional cis-enhancers promoting activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM) and CSR, and altogether behaves as a strong super-enhancer. It can also promote deregulated expression of translocated oncogenes during lymphomagenesis.

View Article and Find Full Text PDF

IgA1 mesangial deposition is the hallmark of IgA nephropathy and Henoch-Schönlein purpura, the onset of which often follows infections. Deposited IgA has been reported as polymeric, J chain associated, and often, hypogalactosylated but with no information concerning the influence of the IgA repertoire or the link between immune stimuli and IgA structure. We explored these issues in the α1KI mouse model, which produces polyclonal human IgA1 prone to mesangial deposition.

View Article and Find Full Text PDF

The IgH intronic enhancer region Eμ is a combination of both a 220-bp core enhancer element and two 310-350-bp flanking scaffold/matrix attachment regions named MARsEμ. In the mouse, deletion of the core-enhancer Eμ element mainly affects VDJ recombination with minor effects on class switch recombination. We carried out endogenous deletion of the full-length Eμ region (core plus MARsEμ) in the mouse genome to study VH gene repertoire and IgH expression in developing B-lineage cells.

View Article and Find Full Text PDF

Classical class-switch recombination (cCSR) substitutes the Cμ gene with Cγ, Cε, or Cα, thereby generating IgG, IgE, or IgA classes, respectively. This activation-induced deaminase (AID)-driven process is controlled by the IgH 3' regulatory region (3'RR). Regulation of rare IgD CSR events has been enigmatic.

View Article and Find Full Text PDF

In the mouse, the regulatory region located at the 3' end of the IgH locus includes four transcriptional enhancers: HS3a, HS1-2, HS3b, and HS4; the first three lie in a quasi-palindromic structure. Although the upstream elements HS3a and HS1-2 proved dispensable for Ig expression and class switch recombination (CSR), the joint deletion of HS3b and HS4 led to a consistent decrease in IgH expression in resting B cells and to a major CSR defect. Within this pair of distal enhancers, it was questionable whether HS3b and HS4 could be considered individually as elements critical for IgH expression and/or CSR.

View Article and Find Full Text PDF