7alpha-Hydroxy-DHEA, 7beta-hydroxy-DHEA and 7beta-hydroxy-EpiA are native metabolites of dehydroepiandrosterone (DHEA) and epiandrosterone (EpiA). Since numerous steroids are reported to interfere with inflammatory and immune processes, our objective was to test the effects of these hydroxysteroids on prostaglandin (PG) production and related enzyme gene expression. Human peripheral blood monocytes were cultured for 4 and 24 h in the presence of each of the steroids (1-100 nM), with and without addition of TNF-alpha (10 ng/mL).
View Article and Find Full Text PDFHigh dose levels of dehydroepiandrosterone and its 7-hydroxylated derivatives have been shown to reduce oxidative stress and inflammatory responses in dextran sodium sulfate (DSS)-induced colitis in rats. Another endogenous steroid, 7beta-hydroxy-epiandrosterone (7beta-hydroxy-EpiA) has been shown to exert neuroprotective effects at much smaller doses. Our aims were to evaluate whether 7beta-hydroxy-EpiA pre-treatment prevents DSS-induced colitis and to determine whether the effects involve changes in anti-inflammatory prostaglandin (PG) D(2) and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) levels.
View Article and Find Full Text PDFSeveral studies have shown that the native 7alpha-hydroxy-dehydroepiandrosterone (7alpha-hydroxy-DHEA) is a substrate for the human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) which converts the 7alpha- into the 7beta-epimer through an oxido-reduction process. Research on the 11beta-HSD1 has investigated its function and structure through using native glucocorticoid substrates and known inhibitors. Other steroid substrates are also of interest.
View Article and Find Full Text PDFGenetic mutations of Twist, a bHLH transcription factor, induce premature fusion of cranial sutures (craniosynostosis) in the Saethre-Chotzen syndrome (SCS). The mechanisms by which Twist haploinsufficiency may alter osteoblast differentiation are poorly understood. In this study, we investigated the role of fibroblast growth factor receptor-2 (Fgfr2) in the abnormal osteoblast differentiation in SCS.
View Article and Find Full Text PDFFibroblast growth factors (FGFs) play an important regulatory role in skeletal development and bone formation. However, the FGF signaling mechanisms controlling osteoblast function are poorly understood. Here, we identified a role for the Src family members Lyn and Fyn in osteoblast differentiation promoted by constitutive activation of FGF receptor-2 (FGFR2).
View Article and Find Full Text PDF