Homing endonucleases (HEs) can be used to induce targeted genome modification to reduce the fitness of pathogen vectors such as the malaria-transmitting Anopheles gambiae and to correct deleterious mutations in genetic diseases. We describe the creation of an extensive set of HE variants with novel DNA cleavage specificities using an integrated experimental and computational approach. Using computational modeling and an improved selection strategy, which optimizes specificity in addition to activity, we engineered an endonuclease to cleave in a gene associated with Anopheles sterility and another to cleave near a mutation that causes pyruvate kinase deficiency.
View Article and Find Full Text PDFHoming endonucleases have great potential as tools for targeted gene therapy and gene correction, but identifying variants of these enzymes capable of cleaving specific DNA targets of interest is necessary before the widespread use of such technologies is possible. We identified homologues of the LAGLIDADG homing endonuclease I-AniI and their putative target insertion sites by BLAST searches followed by examination of the sequences of the flanking genomic regions. Amino acid substitutions in these homologues that were located close to the target site DNA, and thus potentially conferring differences in target specificity, were grafted onto the I-AniI scaffold.
View Article and Find Full Text PDFProtein kinase C (PKC) is a multigene family of serine/threonine protein kinases involved in cell signaling pathways of proliferation and motility. PKC interacts with Rho GTPases in the regulation of the actin cytoskeleton. The PKC-alpha isozyme binds the Rho GTPase cdc42, and both are coordinated with the Rac-phosphatidylinositol-3 kinase (PI3K) signaling pathway in melanoma cell invasion and migration on extracellular matrix proteins.
View Article and Find Full Text PDFThe keratinocyte microparasol, composed of a perinuclear microtubular/melano-phagolysosomal complex, protects the nucleus from UV-induced DNA damage. We have previously demonstrated that cytoplasmic dynein is the motor involved in the perinuclear-directed aggregation of phagocytosed melanosomes. Dynactin, of which p150(Glued) is the major subunit, can link directly to microtubules and links organelles to dynein at different domains.
View Article and Find Full Text PDF