Publications by authors named "Sandrine Faure"

Intestinal smooth muscle differentiation is a complex physico-biological process involving several different pathways. Here, we investigate the properties of Ca waves in the developing intestinal mesenchyme using GCamp6f expressing mouse embryos and investigate their relationship with smooth muscle differentiation. We find that Ca waves are absent in the pre-differentiation mesenchyme and start propagating immediately following α-SMA expression.

View Article and Find Full Text PDF

The enteric nervous system (ENS) is principally derived from vagal neural crest cells that migrate caudally along the entire length of the gastrointestinal tract, giving rise to neurons and glial cells in two ganglionated plexuses. Incomplete migration of enteric neural crest-derived cells (ENCDC) leads to Hirschsprung disease, a congenital disorder characterized by the absence of enteric ganglia along variable lengths of the colorectum. Our previous work strongly supported the essential role of the avian ceca, present at the junction of the midgut and hindgut, in hindgut ENS development, since ablation of the cecal buds led to incomplete ENCDC colonization of the hindgut.

View Article and Find Full Text PDF

Gastrointestinal stromal tumor (GIST), the most common sarcoma, is mainly caused by an oncogenic mutation in the KIT receptor tyrosine kinase. Targeting KIT using tyrosine kinase inhibitors, such as imatinib and sunitinib, provides substantial benefit; however, in most patients, the disease will eventually progress due to KIT secondary mutations leading to treatment failure. Understanding how GIST cells initially adapt to KIT inhibition should guide the selection of appropriate therapies to overcome the emergence of resistance.

View Article and Find Full Text PDF

YAP1 and TAZ are transcriptional co-activator proteins that play fundamental roles in many biological processes, from cell proliferation and cell lineage fate determination to tumorigenesis. We previously demonstrated that Limb Expression 1 (LIX1) regulates YAP1 and TAZ activity and controls digestive mesenchymal progenitor proliferation. However, LIX1 mode of action remains elusive.

View Article and Find Full Text PDF

Gastrointestinal motor activity has been extensively studied in adults; however, only few studies have investigated fetal motor skills. It is unknown when the gastrointestinal tract starts to contract during the embryonic period and how this function evolves during development. Here, we adapted a non-invasive high-resolution echography technique combined with speckle tracking analysis to examine the gastrointestinal tract motor activity dynamics during chick embryo development.

View Article and Find Full Text PDF
Article Synopsis
  • Smooth Muscle Cells (SMCs) can change their behavior and functionality, switching between a relaxed state and a more active, proliferative state, which can be linked to dysfunction.
  • In a study of infants with chronic intestinal pseudo-obstruction (CIPO), it was found that SMCs had reduced contractile markers and increased levels of a receptor called PDGFRA, indicating a shift towards a less differentiated state.
  • Understanding this phenotypic change in CIPO-SMCs could lead to new therapeutic strategies aimed at encouraging these cells to differentiate properly and improve gut motility.
View Article and Find Full Text PDF
Article Synopsis
  • The developing chicken gut starts with movements caused only by smooth muscle, but later changes to movements controlled by special cells called interstitial cells of Cajal (ICCs).
  • ICCs, which help make gut movements more regular and faster, start working in the gut around embryonic day 14.
  • Researchers used special techniques to see these changes and believe humans experience this shift from smooth muscle to ICC control between 12 and 14 weeks of development.
View Article and Find Full Text PDF

Gastrointestinal stromal tumours (GISTs), the most common mesenchymal neoplasm of the gastrointestinal tract, result from deregulated proliferation of transformed KIT-positive interstitial cells of Cajal that share mesenchymal progenitors with smooth muscle cells. Despite the identification of selective KIT inhibitors, primary resistance and relapse remain a major concern. Moreover, most patients develop resistance partly through reactivation of KIT and its downstream signalling pathways.

View Article and Find Full Text PDF

The enteric nervous system (ENS) is a complex network constituted of neurons and glial cells that ensures the intrinsic innervation of the gastrointestinal tract. ENS cells originate from vagal and sacral neural crest cells that are initially located at the border of the neural tube. In birds, sacral neural crest cells (sNCCs) first give rise to an extramural ganglionated structure (the so-called Nerve of Remak [NoR]) and to the pelvic plexus.

View Article and Find Full Text PDF

During development, the gastrointestinal (GI) tract arises from a primary tube composed of mesoderm and endoderm. The mesoderm gives rise to the digestive mesenchyme, which in turn differentiates into multiple tissues, namely the submucosa, the interstitial cells of Cajal and the smooth muscle cells (SMCs). Concomitant with these early patterning events, the primitive GI tract is colonized by vagal enteric neural crest-derived cells (vENCDCs), a population of cells that gives rise to the enteric nervous system, the intrinsic innervation of the GI tract.

View Article and Find Full Text PDF

Background: Smooth muscle cell (SMC) plasticity maintains the balance between differentiated SMCs and proliferative mesenchymal progenitors, crucial for muscular tissue homeostasis. Studies on the development of mesenchymal progenitors into SMCs have proven useful in identifying molecular mechanisms involved in digestive musculature plasticity in physiological and pathological conditions.

Results: Here, we show that Limb Expression 1 (LIX1) molecularly defines the population of mesenchymal progenitors in the developing stomach.

View Article and Find Full Text PDF

This review addresses the developmental roles of 2 GTPases of the Rho family, RhoV/Chp and RhoU/Wrch. These two GTPases form a distinct subfamily related to Rac and Cdc42 proteins and were detected in a screen for Rho members that are particularly expressed in the neural crest, an embryonic tissue peculiar to vertebrates. The neural crest represents a physiological model of normal epithelial to mesenchymal transition (EMT), in which epithelial cells at the border of neural and non-neural ectoderm differentiate, lose their intercellular connections and migrate throughout the embryo.

View Article and Find Full Text PDF

The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium.

View Article and Find Full Text PDF
Article Synopsis
  • In vertebrates, the digestive tract starts as a simple structure and gets shaped into complex parts by interactions between different cell types.
  • Special cells called vagal enteric neural crest cells (vENCCs) are important for the early growth and function of the stomach.
  • Reducing the number of vENCCs causes problems in stomach development and leads to it not working correctly, showing that these cells are crucial for keeping the stomach's identity and helping it develop properly.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists discovered a new syndrome called CAID syndrome that affects the heart and gut rhythm in 17 people from France and Sweden.
  • They found that a specific change in a gene called SGOL1 causes this syndrome, which leads to problems with cell growth and function.
  • The researchers also studied zebrafish and found that when they altered the same gene, the fish showed similar issues to those in humans with CAID syndrome, helping them understand how it works.
View Article and Find Full Text PDF
Article Synopsis
  • Smooth muscle cells in vertebrates can switch between two functions: contracting to help with movement and growing to heal or repair tissues.
  • A protein called RBPMS2 helps control this switching by interacting with specific molecules in the cell.
  • RBPMS2 has a special structure that allows it to connect with itself and other proteins, which is important for its role in helping smooth muscle cells change and function properly.
View Article and Find Full Text PDF

Nonylphenol (NP) is an endocrine disruptor with harmful effects including feminization and carcinogenesis on various organisms. This substance is a degradation product of nonylphenol ethoxylates (NPEO) that is used in several industrial and agricultural processes. In this paper, we examined the assessment of NP exposure on chick embryo development, using a concentration consistent with the environmental concentrations of NP.

View Article and Find Full Text PDF

Regulation of the Bone Morphogenetic Protein (BMP) signaling pathway is essential for the normal development of vertebrate gastrointestinal (GI) tract, but also for the differentiation of the digestive mesenchymal layer into smooth muscles and submucosal layer. Different studies demonstrated that Bapx1 (for bagpipe homeobox homolog 1) negatively regulates the BMP pathway, but its precise expression pattern during the development and the differentiation of the GI tract mesenchyme actually remains to be examined. Here, we present the spatio-temporal expression profile of Bapx1 in the chick GI tract.

View Article and Find Full Text PDF

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract and are often associated with KIT or PDGFRA gene mutations. GIST cells might arise from the interstitial cells of Cajal (ICCs) or from a mesenchymal precursor that is common to ICCs and smooth muscle cells (SMCs). Here, we analyzed the mRNA and protein expression of RNA-Binding Protein with Multiple Splicing-2 (RBPMS2), an early marker of gastrointestinal SMC precursors, in human GISTs (n=23) by in situ hybridization, quantitative RT-PCR analysis and immunohistochemistry.

View Article and Find Full Text PDF

Background & Aims: Gastrointestinal development requires regulated differentiation of visceral smooth muscle cells (SMCs) and their contractile activities; alterations in these processes might lead to gastrointestinal neuromuscular disorders. Gastrointestinal SMC development and remodeling involves post-transcriptional modification of messenger RNA. We investigated the function of the RNA-binding protein for multiple splicing 2 (RBPMS2) during normal development of visceral smooth muscle in chicken and expression of its transcript in human pathophysiological conditions.

View Article and Find Full Text PDF

This review addresses the developmental roles of two GTPases of the Rho family, RhoV/Chp and RhoU/Wrch. These two GTPases form a distinct subfamily related to Rac and Cdc42 proteins and were detected in a screen for Rho members that are particularly expressed in the neural crest, an embryonic tissue peculiar to vertebrates. The neural crest represents a physiological model of normal epithelial to mesenchymal transition (EMT), in which epithelial cells at the border of neural and non-neural ectoderm differentiate, lose their intercellular connections and migrate throughout the embryo.

View Article and Find Full Text PDF

The neural crest (NC) is a stem cell-like population that arises at the border of neural and non-neural ectoderm. During development, NC undergoes an epithelio-mesenchymal transition (EMT), i.e.

View Article and Find Full Text PDF

Rho GTPases play central roles in the control of cell adhesion and migration, cell cycle progression, growth, and differentiation. However, although most of our knowledge of Rho GTPase function comes from the study of the three classic Rho GTPases RhoA, Rac1, and Cdc42, recent studies have begun to explore the expression, regulation, and function of some of the lesser-known members of the Rho GTPase family. In the present study, we cloned the avian orthologues of RhoV (or Chp for Cdc42 homologous protein) and RhoU (or Wrch-1 for Wnt-regulated Cdc42 homolog-1) and examined their expression patterns by in situ hybridization analysis both during early chick embryogenesis and later on, during gastrointestinal tract development.

View Article and Find Full Text PDF

In vertebrates, the Rho family of GTPases is made of 20 members which regulate a variety of cellular functions, including actin cytoskeleton dynamics, cell adhesion and motility, cell growth and survival, gene transcription and membrane trafficking. To get a comprehensive view of Rho implication in physiological epithelial-mesenchymal transition, we carried out an in situ hybridization-based screen to identify Rho members expressed in Xenopus neural crest cells, in which we previously reported RhoB expression at the migrating stage. In the present study, we identify RhoV as an early expressed neural crest marker and provide evidence that its activity is essential for neural crest cell induction.

View Article and Find Full Text PDF