Publications by authors named "Sandrine Cammas Marion"

Two different poly(benzylmalate) biopolymers, a hydrophobic non-PEGylated () and an amphiphilic PEGylated derivative (), have been used to encapsulate a phthalocyanine chosen for its substitution pattern that is highly suitable for photodynamic therapy. Different phthalocyanine/(co)polymers ratios have been used for the nanoprecipitation. A set of six nanoparticles has been obtained.

View Article and Find Full Text PDF

The photothermal properties of a series of neutral radical gold-bis(dithiolene) complexes absorbing in the near-infrared-III window (1550-1870 nm) have been investigated. This class of complexes was found to be good photothermal agents (PTAs) in toluene under 1600 nm laser irradiation with photothermal efficiencies around 40 and 60 % depending on the nature of the dithiolene ligand. To the best of our knowledge, these complexes are the first small molecular photothermal agents to absorb so far into the near infrared.

View Article and Find Full Text PDF

The design of multifunctional nanoparticles for diagnostic and/or therapeutic purposes continues to be a subject of tremendous research [...

View Article and Find Full Text PDF

We recently demonstrated the strong tropism of George Baker (GB) Virus A (GBVA10-9) and protein (CPB) derived synthetic peptides towards hepatoma cells. In a first approach, these peptides were covalently bound to poly(benzyl malate) (PMLABe) and poly(ethylene glycol)--PMLABe (PEG--PMLABe) (co)polymers, and corresponding peptide-decorated nanoparticles (NPs) were prepared by nanoprecipitation. We showed that peptide enhanced NPs internalization by hepatoma cells.

View Article and Find Full Text PDF

Star-shaped hydrophobic porphyrins, acting as powerful fluorescent two-photon photosensitizers for oxygen in organic solvents, can easily be loaded into PMLABe polymeric nanoparticles at various concentrations. In this contribution, the performance of these porphyrin-containing nanoparticles in terms of photodynamic therapy (PDT) is compared to those of the corresponding water-soluble porphyrin analogues when irradiated in MCF-7 cancer cells. While quite promising results are obtained for performing PDT with these nanoparticles, validating this approach as a mean for using more easily accessible and less expensive photosensitizers, from a synthetic perspective, we also show that their luminescence can still be used for bioimaging purposes in spite of their confinement in the nanoparticles, validating also the use of these nano-objects for theranostic purposes.

View Article and Find Full Text PDF

In order to identify the peptides, selected from the literature, that exhibit the strongest tropism towards human hepatoma cells, cell uptake assays were performed using biotinylated synthetic peptides bound to fluorescent streptavidin or engrafted onto nanoparticles (NPs), prepared from biotin-poly(ethylene glycol)--poly(benzyl malate) (Biot-PEG--PMLABe) via streptavidin bridging. Two peptides, derived from the circumsporozoite protein of - (CPB) and George Baker (GB) Virus A (GBVA10-9), strongly enhanced the endocytosis of both streptavidin conjugates and NPs in hepatoma cells, compared to primary human hepatocytes and non-hepatic cells. Unexpectedly, the uptake of CPB- and GBVA10-9 functionalized PEG--PMLABe-based NPs by hepatoma cells involved, at least in part, the peptide binding to apolipoproteins, which would promote NP's interactions with cell membrane receptors of HDL particles.

View Article and Find Full Text PDF

Biocompatible nanoparticles (NPs) of hydrophobic poly(benzyl malate) (PMLABe) were prepared by nanoprecipitation. The influence of nanoprecipitation parameters (initial PMLABe, addition rate, organic solvent/water ratio and stirring speed) were studied to optimize the resulting formulations in terms of hydrodynamic diameter (Dh) and dispersity (PDI). PMLABe NPs with a Dh of 160 nm and a PDI of 0.

View Article and Find Full Text PDF

Recently, short synthetic peptides have gained interest as targeting agents in the design of site-specific nanomedicines. In this context, our work aimed at developing new tools for the diagnosis and/or therapy of hepatocellular carcinoma (HCC) by grafting the hepatotropic George Baker (GB) virus A (GBVA10-9) and protein (CPB)-derived peptides to the biocompatible poly(benzyl malate), PMLABe. We successfully synthesized PMLABe derivatives end-functionalized with peptides GBVA10-9, CPB, and their corresponding scrambled peptides through a thiol/maleimide reaction.

View Article and Find Full Text PDF

Hydrophobic and amphiphilic derivatives of the biocompatible and biodegradable poly(dimethylmalic acid) (PdiMeMLA), varying by the nature of the lateral chains and the length of each block, respectively, have been synthesized by anionic ring-opening polymerization (aROP) of the corresponding monomers using an initiator/base system, which allowed for very good control over the (co)polymers' characteristics (molar masses, dispersity, nature of end-chains). Hydrophobic and core-shell nanoparticles (NPs) were then prepared by nanoprecipitation of hydrophobic homopolymers and amphiphilic block copolymers, respectively. Negatively charged NPs, showing hydrodynamic diameters (Dh) between 50 and 130 nm and narrow size distributions (0.

View Article and Find Full Text PDF

The use of safe natural catalyst such as enzymes for ring opening polymerization (ROP) of β-substituted β-lactones such as benzyl malolactonate (MLABe) is an important objective considering the biomedical applications of the resulting (co)polymers. However, the preparation of well-defined polymeric materials using such systems requires an understanding of enzyme-substrate interactions. In this context, we investigated the mechanism of lipase-catalyzed ROP of MLABe, because it appears that it is probably not the same as the one widely described for other lactones such ε-caprolactone, propiolactone.

View Article and Find Full Text PDF

New thermosensitive liposomes with a phase transition at 42 °C, containing nickel-bis(dithiolene) complexes as efficient and stable photothermal agents, have been formulated and characterized. These liposomes are highly stable and keep their contents at 37 °C for more than 30 days. On the contrary, the mild hyperthermia generated by the nickel-bis(dithiolene) complex under 940 nm NIR irradiation allows for the fine controlled release of the liposome contents, making such liposomes highly suitable for on-demand drug delivery in the human body under NIR laser irradiation.

View Article and Find Full Text PDF
Article Synopsis
  • Drug-loaded nanoparticles (NPs) offer advantages over traditional chemotherapies, such as sustained plasma levels, increased bioavailability, and reduced side effects.
  • The study compared NPs made from poly(benzyl malate) (PMLABe) synthesized via chemical vs. enzymatic polymerization, finding no significant difference in biocompatibility but noting greater cell uptake for enzymatically produced NPs.
  • Overall, PMLABe-based NPs displayed low toxicity at high concentrations and efficient internalization, suggesting their potential as effective drug delivery systems for targeting liver cells and macrophages.
View Article and Find Full Text PDF

Biocompatible nanoparticles (NPs) constituted by amphiphilic poly(ethylene glycol)-block-poly(benzyl malate), PEG-b-PMLABe, have been designed for site-specific PhotoThermal Controlled Release (PTCR) of drugs thanks to the presence of a near infra-red (NIR) photothermally active nickel-bis(dithiolene) complex in the inner core of the NPs, together with doxorubicin (Dox). A nanoprecipitation technique was used to prepare well-defined nickel-bis(dithiolene) and nickel-bis(dithiolene)/Dox loaded NPs, which were characterized by dynamic light scattering (DLS), zeta-potential measurements and Transmission Electron Microscopy (TEM). We have shown that the Dox release was effectively controlled by NIR irradiation (long or pulsed NIR laser irradiation).

View Article and Find Full Text PDF

This work demonstrates that metal-bis(dithiolene) complexes can be efficiently incorporated inside organic nanocarriers and, that under near-infrared (NIR) irradiation, their high photothermal activity can be finely used to release encapsulated drugs on demand. In contrast to gold nanoparticles and other organic NIR dyes, nickel-bis(dithiolene) complexes do not produce singlet oxygen under irradiation, a highly desirable characteristic to preserve the chemical integrity and activity of the loaded drug during the NIR-triggered release from the nanocarriers. Finally, cytotoxicity experiments performed on various cell lines have shown that the incorporation of such metal complexes do not increase the toxicity of the final liposomal formulation.

View Article and Find Full Text PDF

In the past, several systems of drug delivery carriers have been designed with a high capacity to target specific cells and/or tissues and a reduced non-specific toxicity. In this context, we synthesized and characterized novel poly(malic acid) derivatives bearing Doxorubicin (Dox), Poly(ethylene glycol) (PEG) and/or N-Acetyl Galactosamine (NAcGal) for drug delivery. These poly(malic acid) derivatives were obtained by chemical modification of the carboxylic acid lateral groups of poly(malic acid) (PMLA).

View Article and Find Full Text PDF

The present work reports the investigation of the biocompatibility, opsonisation and cell uptake by human primary macrophages and HepaRG cells of nanoparticles (NPs) formulated from poly(β-malic acid)-b-poly(β-hydroxybutyrate) (PMLA-b-PHB) and poly(β-malic acid)-b-poly(trimethylene carbonate) (PMLA-b-PTMC) diblock copolymers, namely PMLA-b-PHB, PMLA-b-PHB, PMLA-b-PTMC and PMLA-b-PTMC. NPs derived from PMLA-b-PHB and PMLA-b-PTMC do not trigger lactate dehydrogenase release and do not activate the secretion of pro-inflammatory cytokines demonstrating the excellent biocompatibility of these copolymers derived nano-objects. Using a protein adsorption assay, we demonstrate that the binding of plasma proteins is very low for PMLA-b-PHB-based nano-objects, and higher for those prepared from PMLA-b-PTMC copolymers.

View Article and Find Full Text PDF

Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.

View Article and Find Full Text PDF

Introduction: Encapsulation of biologically active molecules into nanoparticles (NPs), for site-specific delivery, is a fast growing area. These NPs must be biocompatible, non-toxic, and able to release their load in a controlled way. We have developed a series of NPs based on (bio)degradable and biocompatible poly(malic acid) derivatives, poly(benzyl malate) (PMLABe), with its PEG-grafted stealth analog and target-specific biotin-PEG-b-PMLABe one.

View Article and Find Full Text PDF

The field of specific drug delivery is an expanding research domain. Besides the use of liposomes formed from various lipids, natural and synthetic polymers have been developed to prepare more efficient drug delivery systems either under macromolecular prodrugs or under particulate nanovectors. To ameliorate the biocompatibility of such nanocarriers, degradable natural or synthetic polymers have attracted the interest of many researchers.

View Article and Find Full Text PDF

Amphiphilic derivatives of poly(benzyl malate) were synthesized and characterized with the aim of being used as degradable and biocompatible building blocks for the design of functional nanoparticles (NPs). An anti-cancer model drug, doxorubicin, has been successfully encapsulated into the prepared NPs and its release profile has been evaluated in water and in culture medium. NPs bearing biotin molecules were prepared either for site-specific drug delivery via the targeting of biotin receptors overexpressed on the surface of several cancer cells, or for grafting biotinylated cyclic RGD peptide onto their surface using the strong and highly specific interactions between biotin and the streptavidin protein.

View Article and Find Full Text PDF

The present studies were focused on the formation and characterization of sterically stabilized archaeosomes made from a synthetic PEGylated archaeal lipid. In a first step, a synthetic archaeal tetraether bipolar lipid was functionalized with a poly(ethylene glycol), PEG, and (PEG(45)-Tetraether) with the aim of coating the archaeosome surface with a sterically stabilizing hydrophilic polymer. In a second step, Egg-PC/PEG(45)-Tetraether (90/10 wt%) archaeosomes were prepared, and their physicochemical characteristics were determined by dynamic light scattering (size, polydispersity), cryo-TEM (morphology), and by high-performance thin layer chromatography (lipid composition), in comparison with standard Egg-PC/PEG(45)-DSPE formulations.

View Article and Find Full Text PDF

Design of an efficient site-specific drug delivery system based on degradable functional polymers still remains challenging. In this work, we synthesized and characterized three degradable functional polyesters belonging to the poly(malic acid) family: the poly(benzyl malate) (PMLABe), the poly(ethylene glycol)-b-poly(benzyl malate) (PEG(42)-b-PMLABe), the biotin-poly(ethylene glycol)-b-poly(benzyl malate) (Biot-PEG(62)-PMLABe). Starting from these building blocks, we were able to prepare the corresponding well-defined degradable functional nanoparticles whose toxicity was evaluated in vitro on normal and cancer cell lines.

View Article and Find Full Text PDF

HepaRG progenitor cells are capable of differentiating into hepatocyte-like cells that express a large set of liver-specific functions. These cells, however, only express small amounts of an important cytochrome P450, the CYP2E1, which limits their use for toxicological studies of drugs metabolized by this pathway. Our aim was to establish an efficient transfection protocol to increase CYP2E1 expression in HepaRG cells.

View Article and Find Full Text PDF

In the present work, the possibility to obtain PEGylated nanoparticles from two PBLG derivatives, PEG-b-poly(γ-benzyl L-glutamate), PBLG-PEG-60, and poly(γ-benzyl L-glutamate), PBLG-Bnz-50, by nanoprecipitation has been investigated. Particles were prepared not only from one polymer (PBLG-PEG-60 or PBLG-Bnz-50), but also from mixtures of two PBLG derivatives, PBLG-PEG-60 and PBLG-Bnz-50, in different ratios (90/10, 77/23, and 40/60 wt %). Because of the presence of PEG chains, hydrophilic particles were obtained, which was confirmed by ζ potential measurements (ζ from -13 mV and -21 mV) and by isothermal titration microcalorimetry (ITC).

View Article and Find Full Text PDF