HuR (ElavL1) is one of the main post-transcriptional regulators that determines cell fate. Although the role of HuR in apoptosis is well established, the post-translational modifications that govern this function remain elusive. In this study, we show that PARP1/2-mediated poly(ADP)-ribosylation (PARylation) is instrumental in the pro-apoptotic function of HuR.
View Article and Find Full Text PDFPoly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration.
View Article and Find Full Text PDFmRNA stability is the mechanism by which cells protect transcripts allowing their expression to execute various functions that affect cell metabolism and fate. It is well-established that RNA binding proteins (RBPs) such as HuR use their ability to stabilize mRNA targets to modulate vital processes such as muscle fiber formation (myogenesis). However, the machinery and the mechanisms regulating mRNA stabilization are still elusive.
View Article and Find Full Text PDF