A physical connection between each pair of homologous chromosomes is crucial for reductional chromosome segregation during the first meiotic division and therefore for successful meiosis. Connection is provided by recombination (crossing over) initiated by programmed DNA double-strand breaks (DSBs). Although the topoisomerase-like protein Spo11 makes DSBs and is evolutionarily conserved, how Spo11 (Rec12 in fission yeast) is regulated to form DSBs at the proper time and place is poorly understood.
View Article and Find Full Text PDFThe function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome-wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double-strand breaks (DSBs) that initiate interhomologue recombination, essential to yield viable haploid gametes. We find that the level of H3K4me3 is constitutively higher close to DSB sites, independently of local gene expression levels.
View Article and Find Full Text PDFThe entry into meiosis is characterized by a lengthy premeiotic S phase and a reorganization of the nuclear architecture. Analysis of centromere and telomere dynamics in wild-type Saccharomyces cerevisiae meiosis suggests that resolution of vegetative centromere and telomere clusters are independent events differently connected to premeiotic S phase. Absence of the B-type cyclin Clb5 or the Set1 histone methyltransferase leads to a delay of premeiotic S phase by separate mechanisms.
View Article and Find Full Text PDF