Publications by authors named "Sandrine Arbogast"

The purpose of this study was to identify causes of quadriceps muscle weakness in facioscapulohumeral muscular dystrophy (FSHD). To this aim, we evaluated quadriceps muscle and fat volumes by magnetic resonance imaging and their relationships with muscle strength and oxidative stress markers in adult patients with FSHD (n = 32) and healthy controls (n = 7), and the effect of antioxidant supplementation in 20 of the 32 patients with FSHD (n = 10 supplementation and n = 10 placebo) (NCT01596803). Compared with healthy controls, the dominant quadriceps strength and quality (muscle strength per unit of muscle volume) were decreased in patients with FSHD.

View Article and Find Full Text PDF

In patients with facioscapulohumeral muscular dystrophy (FSHD), a rare genetic neuromuscular disease, reduced physical performance is associated with lower blood levels of vitamin C, zinc, selenium, and increased oxidative stress markers. Supplementation of vitamin C, vitamin E, zinc, and selenium improves the quadriceps' physical performance. Here, we compared the nutritional status of 74 women and 85 men with FSHD.

View Article and Find Full Text PDF

Background And Aims: Muscle mass (MM) impairment observed in facioscapulohumeral muscular dystrophy (FSHD) may bias estimated glomerular filtration rate (eGFR) based on creatinine (eGFRcreat). eGFR based on cystatin C (eGFRcys), produced by all nucleated cells, should be an interesting alternative. Main objectives were to compare eGFRcreat and eGRFcys for chronic kidney disease (CKD) staging and for annual eGFR evolution.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive muscle weakness. Adenine nucleotide translocator 1 (ANT1), the only 4q35 gene involved in mitochondrial function, is strongly expressed in FSHD skeletal muscle biopsies. However, its role in FSHD is unclear.

View Article and Find Full Text PDF

SEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease.

View Article and Find Full Text PDF

The skeletal muscle ryanodine receptor is an essential component of the excitation-contraction coupling apparatus. Mutations in RYR1 are associated with several congenital myopathies (termed RYR1-related myopathies) that are the most common non-dystrophic muscle diseases of childhood. Currently, no treatments exist for these disorders.

View Article and Find Full Text PDF

Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown.

View Article and Find Full Text PDF

MyoD, a master regulator of myogenesis, exhibits a circadian rhythm in its mRNA and protein levels, suggesting a possible role in the daily maintenance of muscle phenotype and function. We report that MyoD is a direct target of the circadian transcriptional activators CLOCK and BMAL1, which bind in a rhythmic manner to the core enhancer of the MyoD promoter. Skeletal muscle of Clock(Δ19) and Bmal1(-/-) mutant mice exhibited ∼30% reductions in normalized maximal force.

View Article and Find Full Text PDF

Healthy cells continually produce low levels of reactive oxygen species (ROS), which are buffered by multiple antioxidant systems. Imbalance between ROS production and elimination results in oxidative stress, which has been implicated in aging and in numerous human diseases, including cancer and diabetes. Selenoproteins are a family of proteins that contain the amino acid selenocysteine, encoded by an in-frame UGA.

View Article and Find Full Text PDF

Objective: Mutations of the selenoprotein N gene (SEPN1) cause SEPN1-related myopathy (SEPN1-RM), a novel early-onset muscle disorder formerly divided into four different nosological categories. Selenoprotein N (SelN) is the only selenoprotein involved in a genetic disease; its function being unknown, no treatment is available for this potentially lethal disorder. Our objective was to clarify the role of SelN and the pathophysiology of SEPN1-RM to identify therapeutic targets.

View Article and Find Full Text PDF

Mutations in SEPN1 result in a spectrum of early-onset muscle disorders referred to as SEPN1-related myopathy. The SEPN1 gene encodes selenoprotein N (SelN), which contains the amino acid selenocysteine (Sec). Incorporation of Sec occurs due to redefinition of a UGA codon during translation.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF) diminishes specific force of skeletal muscle. To address the mechanism of this response, we tested the hypothesis that TNF acts via the type 1 (TNFR1) receptor subtype to increase oxidant activity and thereby depress myofibrillar function. Experiments showed that a single intraperitoneal dose of TNF (100 microg/kg) increased cytosolic oxidant activity (P < 0.

View Article and Find Full Text PDF

Antigravity muscles atrophy and weaken during prolonged mechanical unloading caused by bed rest or spaceflight. Unloading also induces oxidative stress in muscle, a putative cause of weakness. We tested the hypothesis that dietary supplementation with Bowman-Birk inhibitor concentrate (BBIC), a soy protein extract, would oppose these changes.

View Article and Find Full Text PDF

Skeletal muscle of patients with Duchenne-type muscular dystrophy and mdx mice exhibits elevated activity of the transcription factor NF-kappaB (nuclear factor-kappaB), which may play a role in muscle catabolism. We measured skeletal muscle NF-kappaB activity in mdx mice at three ages (10 days, 4 weeks, and 8 weeks) to test the hypothesis that NF-kappaB activity is elevated in an age-dependent manner in these mice. In addition, we tested the hypothesis that NF-kappaB activity could be reduced in mdx skeletal muscle by dietary supplementation with curcumin (1% w/v) or by fatiguing muscle contractions.

View Article and Find Full Text PDF

Phospholipase A2 (PLA2) activity supports production of reactive oxygen species (ROS) by mammalian cells. In skeletal muscle, endogenous ROS modulate the force of muscle contraction. We tested the hypothesis that skeletal muscle cells constitutively express the calcium-independent PLA2 (iPLA2) isoform and that iPLA2 modulates both cytosolic oxidant activity and contractile function.

View Article and Find Full Text PDF

Introduction: Prolonged mechanical unloading induces skeletal muscle weakness, a major problem following extended bed rest or spaceflight. Antioxidants are reported to partially inhibit the weakness caused by limb immobilization. The current study tested allopurinol, a xanthine oxidase inhibitor with antioxidant properties, for its capacity to protect the function of unloaded antigravity muscles.

View Article and Find Full Text PDF

This study tested the hypothesis that skeletal muscle contraction activates nuclear factor-kappaB (NF-kappaB), a putative regulator of muscle protein breakdown. Muscle biopsies were obtained from the vastus lateralis of healthy humans before, immediately after, and 1 h after fatiguing resistance exercise of the lower limbs. Biopsies were analyzed for nuclear NF-kappaB DNA binding activity by using electrophoretic mobility shift assay.

View Article and Find Full Text PDF

Free radicals are produced continuously by skeletal muscle fibers. Extracellular release of reactive oxygen species (ROS) and nitric oxide (NO) derivatives has been demonstrated, but little is known about intracellular oxidant regulation. We used a fluorescent oxidant probe, 2',7'-dichlorofluorescin (DCFH), to assess net oxidant activity in passive muscle fiber bundles isolated from mouse diaphragm and studied in vitro.

View Article and Find Full Text PDF

We compared the changes in compound muscle mass action potential (M-wave) recorded in vastus lateralis in response to hyperbaric hyperoxia (HBO) in nine combat divers who dived daily while breathing 100% O2 or O2-enriched mixture (O2 divers) to those measured in eight recreational divers who dived occasionally using compressed air/21% O2 (air divers). The O2 divers completed a 6-h HBO exposure in which the inspired oxygen pressure (PiO2) varied from 1.15 to 2.

View Article and Find Full Text PDF

It has previously been shown that both hypoxemia and nitric oxide (NO) synthase blockade depress the activation of group IV muscle afferents after muscle stimulation (MS). In the present study, we questioned whether hypoxemia exerts a specific inhibitory influence, independently from its effects on endogenous NO formation. This hypothesis was tested in two groups of anesthetized rabbits in which we examined the effects of hypoxemia, and then of subsequent NO synthase blockade by N(G)-nitro-L-arginine methyl ester (L-NAME), and vice versa.

View Article and Find Full Text PDF