A series of polyphosphazenes with molecular brush type structures have been prepared with controlled molecular weights and narrow polydispersities. The polymers show lower critical solution temperatures (LCST) between 18 and 90 °C, which can be easily tailored by choice of side-substituent to suit the required application. A temperature triggered self-assembly is observed to give stable colloidal aggregates with dimensions in the region of 100-300 nm.
View Article and Find Full Text PDFThe synthesis of a series of novel, water-soluble poly(organophosphazenes) prepared via living cationic polymerization is presented. The degradation profiles of the polyphosphazenes prepared are analyzed by GPC, P NMR spectroscopy, and UV-Vis spectroscopy in aqueous media and show tunable degradation rates ranging from days to months, adjusted by subtle changes to the chemical structure of the polyphosphazene. Furthermore, it is observed that these polymers demonstrate a pH-promoted hydrolytic degradation behavior, with a remarkably faster rate of degradation at lower pH values.
View Article and Find Full Text PDFUsing living cationic polymerization, a series of polyphosphazenes is prepared with precisely controlled molecular weights and narrow polydispersities. As well as varying chain length through the use of a living polymerization, amine-capped polyalkylene oxide (Jeffamine) side chains with varied lengths are grafted to the polymer backbone to give a series of polymers with varied dimensions. Dynamic light scattering and size exclusion chromatography are used to confirm the preparation of polymers with a variety of controlled dimensions and thus hydrodynamic volumes.
View Article and Find Full Text PDFA simple polymerization of trichlorophosphoranimine (Cl3 P = N-SiMe3 ) mediated by functionalized triphenylphosphines is presented. In situ initiator formation and the subsequent polymerization progress are investigated by (31) P NMR spectroscopy, demonstrating a living cationic polymerization mechanism. The polymer chain lengths and molecular weights of the resulting substituted poly(organo)phosphazenes are further studied by (1) H NMR spectroscopy and size exclusion chromatography.
View Article and Find Full Text PDF