Publications by authors named "Sandra Wiley"

Antiangiogenic drugs may cause vascular normalization and correct hypoxia in tumors, shifting cells to mitochondrial respiration as the primary source of energy. In turn, the addition of an inhibitor of mitochondrial respiration to antiangiogenic therapy holds potential to induce synthetic lethality. This study evaluated the mitochondrial inhibitor ME-344 in combination with bevacizumab in patients with refractory metastatic colorectal cancer (mCRC).

View Article and Find Full Text PDF

The anti-apoptotic protein myeloid cell leukemia-1 (Mcl-1) contributes to the pathophysiology of acute myeloid leukemia (AML) and certain B-cell malignancies. Tumor dependence on Mcl-1 is associated with resistance to venetoclax. Voruciclib, an oral cyclin-dependent kinase (CDK) inhibitor targeting CDK9, indirectly decreases Mcl-1 protein expression and synergizes with venetoclax in preclinical models.

View Article and Find Full Text PDF

Many surgeons request use of 10% povidone-iodine (PI) for vaginal antisepsis; however, when PI is contraindicated, some surgeons request use of chlorhexidine gluconate (CHG) instead. The purpose of this randomized controlled trial was to determine any significant differences in self-reported symptoms associated with vaginal antisepsis with either 10% PI scrub or 4% CHG with 4% isopropyl alcohol. The control group comprised 62 participants who underwent vaginal antisepsis with the PI product, and the intervention group comprised 58 participants who underwent vaginal antisepsis with the CHG product.

View Article and Find Full Text PDF

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors.

View Article and Find Full Text PDF

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these combination therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors.

View Article and Find Full Text PDF

Preserving proteostasis is a major survival mechanism for cancer. Dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is a key oncogenic kinase that directly activates the transcription factor heat-shock factor 1 (HSF1) and the 26S proteasome. Targeting DYRK2 has proven to be a tractable strategy to target cancers sensitive to proteotoxic stress; however, the development of HSF1 inhibitors remains in its infancy.

View Article and Find Full Text PDF

The fundamental importance of the 26S proteasome in health and disease suggests that its function must be finely controlled, and yet our knowledge about proteasome regulation remains limited. Posttranslational modifications, especially phosphorylation, of proteasome subunits have been shown to impact proteasome function through different mechanisms, although the vast majority of proteasome phosphorylation events have not been studied. Here, we have characterized 1 of the most frequently detected proteasome phosphosites, namely Ser361 of Rpn1, a base subunit of the 19S regulatory particle.

View Article and Find Full Text PDF

Dependence on the 26S proteasome is an Achilles' heel for triple-negative breast cancer (TNBC) and multiple myeloma (MM). The therapeutic proteasome inhibitor, bortezomib, successfully targets MM but often leads to drug-resistant disease relapse and fails in breast cancer. Here we show that a 26S proteasome-regulating kinase, DYRK2, is a therapeutic target for both MM and TNBC.

View Article and Find Full Text PDF

Phosphoproteomics studies have reported phosphorylation at multiple sites within collagen, raising the possibility that these post-translational modifications regulate the physical or biological properties of collagen. In this study, molecular dynamics simulations and experimental studies were carried out on model peptides to establish foundational principles of phosphorylation of Ser residues in collagen. A (Gly-Xaa-Yaa) peptide was designed to include a Ser-containing sequence from type I collagen that was reported to be phosphorylated.

View Article and Find Full Text PDF

Ca signaling is important for many cellular and physiological processes, including cardiac function. Although sarcoplasmic reticulum (SR) proteins involved in Ca signaling have been shown to be phosphorylated, the biochemical and physiological roles of protein phosphorylation within the lumen of the SR remain essentially uncharacterized. Our laboratory recently identified an atypical protein kinase, Fam20C, which is uniquely localized to the secretory pathway lumen.

View Article and Find Full Text PDF

Precise Ca cycling through the sarcoplasmic reticulum (SR), a Ca storage organelle, is critical for proper cardiac muscle function. This cycling initially involves SR release of Ca via the ryanodine receptor, which is regulated by its interacting proteins junctin and triadin. The sarco/endoplasmic reticulum Ca ATPase (SERCA) pump then refills SR Ca stores.

View Article and Find Full Text PDF

The existence of extracellular phosphoproteins has been acknowledged for over a century. However, research in this area has been undeveloped largely because the kinases that phosphorylate secreted proteins have escaped identification. Fam20C is a kinase that phosphorylates S-x-E/pS motifs on proteins in milk and in the extracellular matrix of bones and teeth.

View Article and Find Full Text PDF

Background: Targeting the mitochondria during ischemia/reperfusion (IR) can confer cardioprotection leading to improved clinical outcomes. The cardioprotective potential of (-)-epicatechin (EPI) during IR via modulation of mitochondrial function was evaluated.

Methods And Results: Ischemia was induced in rats via a 45 min occlusion of the left anterior descending coronary artery followed by 1 h, 48 h, or 3 week reperfusion.

View Article and Find Full Text PDF

The family with sequence similarity 20, member C (Fam20C) has recently been identified as the Golgi casein kinase. Fam20C phosphorylates secreted proteins on Ser-x-Glu/pSer motifs and loss-of-function mutations in the kinase cause Raine syndrome, an often-fatal osteosclerotic bone dysplasia. Fam20C is potentially an upstream regulator of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23), because humans with FAM20C mutations and Fam20C KO mice develop hypophosphatemia due to an increase in full-length, biologically active FGF23.

View Article and Find Full Text PDF

Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(-/-) mice displayed ER stress and showed hallmarks of the unfolded protein response.

View Article and Find Full Text PDF

Thiazolidinedione (TZD) insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs.

View Article and Find Full Text PDF

Facilitated pyruvate transport across the mitochondrial inner membrane is a critical step in carbohydrate, amino acid, and lipid metabolism. We report that clinically relevant concentrations of thiazolidinediones (TZDs), a widely used class of insulin sensitizers, acutely and specifically inhibit mitochondrial pyruvate carrier (MPC) activity in a variety of cell types. Respiratory inhibition was overcome with methyl pyruvate, localizing the effect to facilitated pyruvate transport, and knockdown of either paralog, MPC1 or MPC2, decreased the EC50 for respiratory inhibition by TZDs.

View Article and Find Full Text PDF

Protein phosphorylation is a fundamental mechanism regulating nearly every aspect of cellular life. Several secreted proteins are phosphorylated, but the kinases responsible are unknown. We identified a family of atypical protein kinases that localize within the Golgi apparatus and are secreted.

View Article and Find Full Text PDF

PTPMT1 was the first protein tyrosine phosphatase found localized to the mitochondria, but its biological function was unknown. Herein, we demonstrate that whole body deletion of Ptpmt1 in mice leads to embryonic lethality, suggesting an indispensable role for PTPMT1 during development. Ptpmt1 deficiency in mouse embryonic fibroblasts compromises mitochondrial respiration and results in abnormal mitochondrial morphology.

View Article and Find Full Text PDF

A primary role for mitochondrial dysfunction is indicated in the pathogenesis of insulin resistance. A widely used drug for the treatment of type 2 diabetes is pioglitazone, a member of the thiazolidinedione class of molecules. MitoNEET, a 2Fe-2S outer mitochondrial membrane protein, binds pioglitazone [Colca et al.

View Article and Find Full Text PDF

MitoNEET is an integral protein of the outer mitochondrial membrane and is the flagship of a small family of proteins whose hallmark is the presence of a CDGSH domain. Initially annotated as a zinc finger, the CDGSH domain actually binds a redox-active 2Fe-2S cluster, giving mitoNEET the distinction of being the first 2Fe-2S protein identified in the outer membrane of mitochondria. This chapter describes methods for isolating mitochondrial membrane fractions that are enriched in mitoNEET, generating constructs for the expression of recombinant mitoNEET protein and analyzing the 2Fe-2S cluster of mitoNEET in vitro.

View Article and Find Full Text PDF

The pyruvate dehydrogenase multienzyme complex (PDC) is a key regulatory point in cellular metabolism linking glycolysis to the citric acid cycle and lipogenesis. Reversible phosphorylation of the pyruvate dehydrogenase enzyme is a critical regulatory mechanism and an important point for monitoring metabolic activity. To directly determine the regulation of the PDC by phosphorylation, we developed a complete set of phospho-antibodies against the three known phosphorylation sites on the E1 alpha subunit of pyruvate dehydrogenase (PDHE1alpha).

View Article and Find Full Text PDF

Although large-scale approaches have identified numerous mitochondrial phosphoproteins, little is known about the mitochondrial kinases and phosphatases that regulate these phosphoproteins. Here, we identify two members of the atypical dual specificity phosphatases (DSP), DSP18 and DSP21, that are localized in mitochondria. Although DSP18 is widely expressed in several mammalian tissues, DSP21 is selectively expressed in the testes.

View Article and Find Full Text PDF

Iron-sulfur (Fe-S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 A x-ray crystal structure of the first identified outer mitochondrial membrane Fe-S protein, mitoNEET.

View Article and Find Full Text PDF

The outer mitochondrial membrane protein mitoNEET was discovered as a binding target of pioglitazone, an insulin-sensitizing drug of the thiazolidinedione class used to treat type 2 diabetes (Colca, J. R., McDonald, W.

View Article and Find Full Text PDF