Publications by authors named "Sandra Vomstein"

The peptide bombesin (BBN) is a peptide with high affinity for the gastrin-releasing peptide receptor (GRPr), a receptor that is overexpressed by, for example, breast and prostate cancers. Thus, GRPr agonists can be used as cancer-targeting vectors to shuttle diagnostic and therapeutic agents into tumor cells. With the aim of optimizing the tumor targeting properties of a radiolabeled [Nle(14)]BBN(7-14) moiety, novel BBN(7-14)- and BBN(6-14)-based radioconjugates were synthesized, labeled with Lu-177, and fully evaluated in vitro and in vivo.

View Article and Find Full Text PDF

Neurotensin (NT) is a regulatory peptide with nanomolar affinity toward NT receptors, which are overexpressed by different clinically relevant tumors. Its binding sequence, NT(8-13), represents a promising vector for the development of peptidic radiotracers for tumor imaging and therapy. The main drawback of the peptide is its short biological half-life due to rapid proteolysis in vivo.

View Article and Find Full Text PDF

Novel backbone-modified radiolabeled analogs based on the tumor targeting peptide bombesin were synthesized and fully evaluated in vitro and in vivo. We have recently introduced the use of 1,4-disubstituted 1,2,3-triazoles as metabolically stable trans-amide bond surrogates in radiolabeled peptides in order to improve their tumor targeting. As an extension of our approach, we now report several backbone-modified analogs of the studied bombesin peptide bearing multiple triazole substitutions.

View Article and Find Full Text PDF

Unlabelled: Clinical studies have demonstrated the potential of radiometallated exendin-4 derivatives for the imaging of glucagonlike peptide-1 receptor-overexpressing insulinomas. Recently investigated exendin-4 derivatives were radiolabeled with the SPECT isotopes 99mTc or 111In. Despite promising results, the low spatial resolution associated with SPECT and the occasional need to perform imaging several days after injection for the demarcation of insulinomas from the kidneys represent current limitations.

View Article and Find Full Text PDF

Radiolabeled peptides which target tumor-specific membrane structures of cancer cells represent a promising class of targeted radiopharmaceuticals for the diagnosis and therapy of cancer. A potential drawback of a number of reported radiopeptides is the rapid washout of a substantial fraction of the initially delivered radioactivity from cancer cells and tumors. This renders the initial targeting effort in part futile and results in a lower imaging quality and efficacy of the radiotracer than achievable.

View Article and Find Full Text PDF

Radiolabeled regulatory peptides are useful tools in nuclear medicine for the diagnosis (imaging) and therapy of cancer. The specificity of the peptides towards GPC receptors, which are overexpressed by cancer cells, and their favorable pharmacokinetic profile make them ideal vectors to transport conjugated radionuclides to tumors and metastases. However, after internalization of the radiopeptide into cancer cells and tumors, a rapid washout of a substantial fraction of the delivered radioactivity is often observed.

View Article and Find Full Text PDF

Osteoporosis is one of the major health problems today, yet little is known about the loss of bone mass caused by reduced activity of the bone-forming osteoblasts. Here we show that mice deficient for the transcriptional cofactor four and a half LIM domains 2 (Fhl2) exhibit a dramatic decrease of bone mass in both genders. Osteopenia is caused by a reduced bone formation rate that is solely due to the diminished activity of Fhl2-deficient osteoblasts, while their number remains unchanged.

View Article and Find Full Text PDF