Dietary antioxidants may be useful in counteracting the chronic inflammatory status in neurodegenerative diseases by reducing oxidative stress due to accumulation of reactive oxygen species (ROS). In this study, we newly described the efficacy of a number of dietary antioxidants (polyphenols, carotenoids, thiolic compounds, and oligoelements) on viability of neuronal PC12 cells following Nerve Growth Factor (NGF) deprivation, a model of age-related decrease of neurotrophic support that triggers neuronal loss. Neuroprotection by antioxidants during NGF deprivation for 24 h was largely dependent on their concentrations: all dietary antioxidants were able to efficiently support cell viability by reducing ROS levels and restoring mitochondrial function, while preserving the neuronal morphology.
View Article and Find Full Text PDFNeuronal death has been reported to involve mitochondrial dysfunction and cell cycle reentry. In this report, we used Nerve Growth Factor (NGF)-differentiated PC12 cells to investigate mechanisms linking mitochondrial dysfunction and cell cycle activation during neuronal death induced by NGF withdrawal and/or oxidative stress. We found that loss of survival following H(2) O(2) -induced oxidative stress or NGF deprivation was preceded by a decrease in mitochondrial membrane potential (ΔΨm), increase in reactive oxygen species (ROS), and up-regulation of cyclin D1 and phosphorylation (Ser-780) of protein retinoblastoma (P-pRb), without an increase of proliferation rates.
View Article and Find Full Text PDFObjective: Implement a memory impairment screening procedure for elderly Hispanic primary care patients, and analyze its yield and challenges to further triage and diagnostic evaluation.
Methods: Three hundred twenty nine Hispanic patients aged ≥60 years or proxy informants were enrolled from outpatient primary care clinics at an urban safety-net medical center. Patients were screened for memory impairment using the WHO-UCLA AVLT; for those without consent capacity, proxies were given the IQCODE.
We investigated whether polyunsaturated fatty acids (PUFA), which might be a useful complementary therapy among patients with multiple sclerosis (MS), are able to modulate matrix metalloproteinase (MMP) production in microglial cultures. MMPs are myelinotoxic factors. Primary cultures of rat microglia were treated with different doses of omega-3 (omega-3) PUFA or purified fish oil, containing a mixture of omega-3 and omega-6 PUFA, and simultaneously activated by exposure to lipopolysaccharide (LPS).
View Article and Find Full Text PDF