Capsaicin analogs, whether sourced from natural origins or synthesized de novo, have garnered significant attention across diverse scientific disciplines. This comprehensive investigation explores the expansive domain of medicinal chemistry and pharmacology, focusing on capsaicin and its analogs. Notably, these analogs exhibit a wideranging pharmacological spectrum, with a particular emphasis on their potent antitumor properties.
View Article and Find Full Text PDFIntroduction: Drug repositioning is a strategy to identify a new therapeutic indication for molecules that have been approved for other conditions, aiming to speed up the traditional drug development process and reduce its costs. The high prevalence and incidence of coronavirus disease 2019 (COVID-19) underline the importance of searching for a safe and effective treatment for the disease, and drug repositioning is the most rational strategy to achieve this goal in a short period of time. Another advantage of repositioning is the fact that these compounds already have established synthetic routes, which facilitates their production at the industrial level.
View Article and Find Full Text PDFThe folate metabolic cycle is an important biochemical process for the maintenance of cellular homeostasis, and is a widely studied pathway of cellular replication control in all organisms. In microorganisms such as , for instance, dihydrofolate reductase (DHFR) is the enzyme commonly explored as a molecular target for the development of new antibiotics. In the same way, dihydropteroate synthase (DHPS) was studied extensively until the first multidrug-resistant strains of mycobacteria that could not be killed by sulfonamides were found.
View Article and Find Full Text PDF