This study aimed at in vivo visualization of cyclooxygenase-2 (COX-2) by optical imaging using a representative compound of a class of autofluorescent 2,3-diaryl-substituted indole-based selective COX-2 inhibitors (2,3-diaryl-indole coxibs). COX-2 was successfully visualized in mice models with phorbol myristate ester (TPA)-induced inflammation or bearing xenografted human melanoma cells by 2-[4-(aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-1H-indole (C1). COX-2 protein expression in both TPA-induced inflammatory sites and human melanoma xenografts was confirmed by immunoblotting.
View Article and Find Full Text PDFRadiotherapy of various cancers is closely associated with increased cardiovascular morbidity and mortality. Arachidonic acid metabolites are supposed to play a key role in radiation-induced vascular dysfunction. This study was designed to evaluate the effects of novel, antioxidative 2,3-diaryl-substituted indole-based selective cyclooxygenase-2 (COX-2) inhibitors (2,3-diaryl-indole coxibs) on radiation-induced formation of arachidonic acid metabolites via COX-2 and oxidant stress pathways in an organotypical vascular model of rat aortic rings.
View Article and Find Full Text PDFHydrogels prepared from gelatin and lysine diisocyanate ethyl ester provide tailorable elastic properties and degradation behavior. Their interaction with human aortic endothelial cells (HAEC) as well as human macrophages (Mɸ) and granulocytes (Gɸ) were explored. The experiments revealed a good biocompatibility, appropriate cell adhesion, and cell infiltration.
View Article and Find Full Text PDF