The combination of isoniazid (INH) and rifampicin (RIF) is indicated for the treatment maintenance phase of tuberculosis (TB) in adults and children. In Brazil, there is no current reference listed drug for this indication in children. Farmanguinhos has undertaken the development of an age-appropriate dispersible tablet to be taken with water for all age groups from birth to adolescence.
View Article and Find Full Text PDFThis report summarizes the proceedings for Day 3 of the workshop titled "". This day focused on the current and future drug product quality applications of PBBM from the innovator and generic industries as well as the regulatory agencies perspectives. The presentations, which included several case studies, covered the applications of PBBM in generic drug product development, applications of virtual bioequivalence trials to support formulation bridging and the utility of absorption modeling in clinical pharmacology assessments.
View Article and Find Full Text PDFOmaveloxolone is a nuclear factor (erythroid-derived 2)-like 2 activator approved in the United States and the European Union for the treatment of patients with Friedreich ataxia aged ≥16 years, with a recommended dosage of 150 mg orally once daily on an empty stomach. The effect of the US Food and Drug Administration (FDA) high-fat breakfast on the pharmacokinetic profile of omaveloxolone observed in study 408-C-1703 (NCT03664453) deviated from the usual linear correlation between fed/fasted maximum plasma concentration (C) and area under the concentration-time curve (AUC) ratios reported for various oral drugs across 323 food effect studies. Here, physiologically based biopharmaceutics modeling (PBBM) was implemented to predict and explain the effect of the FDA high-fat breakfast on a 150-mg dose of omaveloxolone.
View Article and Find Full Text PDFThis Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification.
View Article and Find Full Text PDFThis work shows the utilization of a physiologically based biopharmaceutics model (PBBM) to mechanistically explain the impact of diverse food types on the pharmacokinetics (PK) of isoniazid (INH) and acetyl-isoniazid (Ac-INH). The model was established and validated using published PK profiles for INH along with a combination of measured and predicted values for the physico-chemical and biopharmaceutical propertied of INH and Ac-INH. A dedicated ontogeny model was developed for N-acetyltransferase 2 (NAT2) in human integrating Michaelis Menten parameters for this enzyme in the physiologically based pharmacokinetic (PBPK) model tissues and in the gut, to explain the pre-systemic and systemic metabolism of INH across different acetylator types.
View Article and Find Full Text PDFPhysiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application.
View Article and Find Full Text PDFPexidartinib is a systemic treatment for patients with tenosynovial giant cell tumor not amenable to surgery. Oral absorption of pexidartinib is affected by food; administration with a high-fat meal (HFM) or low-fat meal (LFM) increases absorption by approximately 100% and approximately 60%, respectively, compared with the fasted state. Pexidartinib is currently dosed 250 mg orally twice daily with an LFM (approximately 11-14 g of total fat).
View Article and Find Full Text PDFThe pharmaceutical industry and regulatory agencies rely on dissolution similarity testing to make critical product decisions as part of drug product life cycle management. Accordingly, the application of mathematical approaches to evaluate dissolution profile similarity is described in regulatory guidance with the emphasis given to the similarity factor f with little discussion of alternative methods. In an effort to highlight current practices to assess dissolution profile similarity and to strive toward global harmonization, a workshop entitled "In Vitro Dissolution Similarity Assessment in Support of Drug Product Quality: What, How, When" was held on May 21-22, 2019 at the University of Maryland, Baltimore.
View Article and Find Full Text PDFHighly variable disposition after oral ingestion of acyclovir has been reported, although little is known regarding the underlying mechanisms. Different studies using the same reference product (Zovirax ®) showed that C and AUC were respectively 44 and 35% lower in Saudi Arabians than Europeans, consistent with higher frequencies of reduced-activity polymorphs of the organic cation transporter (OCT1) in Europeans. In this study, the contribution of physiology (i.
View Article and Find Full Text PDFJ Pharm Sci
December 2021
For oral drug products, in vitro dissolution is the most used surrogate of in vivo dissolution and absorption. In the context of drug product quality, safe space is defined as the boundaries of in vitro dissolution, and relevant quality attributes, within which drug product variants are expected to be bioequivalent to each other. It would be highly desirable if the safe space could be established via a direct link between available in vitro data and in vivo pharmacokinetics.
View Article and Find Full Text PDFOn May 4, 2020, the US Food and Drug Administration (FDA) hosted an online public workshop titled "FY 2020 Generic Drug Regulatory Science Initiatives Public Workshop" to provide an overview of the status of the science and research priorities and to solicit input on the development of Generic Drug User Fee Amendments fiscal year 2021 priorities. This report summarizes the podium presentations and the outcome of discussions along with innovative ways to overcome challenges and significant opportunities related to model-based approaches in bioequivalence assessment for breakout session 4 titled, "Data analysis and model-based bioequivalence (BE)." This session focused on the application of model-based approaches in the generic drug development, with a vision of accelerating regulatory decision making for abbreviated new drug application assessments.
View Article and Find Full Text PDFThis report summarizes the proceedings for Day 3 of the workshop titled "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, patient-centric product development necessitates the development of clinically relevant drug product specifications (CRDPS). In this regard, Physiologically Based Biopharmaceutics modeling (PBBM) is a viable tool to establish links between in-vitro to in-vivo data, and support with establishing CRDPS.
View Article and Find Full Text PDFThis workshop report summarizes the proceedings of Day 2 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, physiologically based biopharmaceutics modeling (PBBM) is a tool to link variations in the drug product quality attributes to in vivo outcomes enabling the establishment of clinically relevant drug product specifications (CRDPS). Day 2 of the workshop focused on best practices in developing, verifying and validating PBBM.
View Article and Find Full Text PDFThis workshop report summarizes the proceedings of Day 1 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls". Physiologically based biopharmaceutics models (PBBM) are tools which enable the drug product quality attributes to be linked to the in vivo performance. These tools rely on key quality inputs in order to provide reliable predictions.
View Article and Find Full Text PDFThe pharmaceutical industry and regulatory agencies rely on dissolution similarity testing to make critical product performance decisions as part of drug product life cycle management. Accordingly, the application of mathematical approaches to evaluate dissolution profile similarity is described in regulatory guidance. However, the requirements (e.
View Article and Find Full Text PDFDuring non-clinical and clinical development of a new molecular entity (NME), modeling and simulation (M&S) are routinely used to predict the exposure and pharmacokinetics (PK) of the drug compound in humans. The basic methodology and output are generally understood across all functional disciplines. However, this understanding is mostly restricted to traditional methods such as those in simplified kinetic models and void of adequate mechanistic foundation to address questions beyond the observed clinical data.
View Article and Find Full Text PDFThe implementation of clinically relevant drug product specifications (CRDPS) depends on establishing a link between in vitro performance and in vivo exposure. The scientific community, including regulatory agencies, relies on biopharmaceutics tools on the in vitro performance side, while to enable the link to in vivo exposure, physiologically based pharmacokinetic (PBPK) modeling offers much promise. However, when it comes to PBPK applications in support of CRDPS, otherwise called physiologically based biopharmaceutics models (PBBM), the tools are not yet at the desired level.
View Article and Find Full Text PDFThis publication summarizes the proceedings of day 2 of a 3-day workshop on "Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development." Patient-centric drug product development from a drug product quality perspective necessitates the establishment of clinically relevant drug product specifications via an in vitro-in vivo link. Modeling and simulation offer a path to establish this link; in this regard, physiologically based modeling has been implemented successfully to support regulatory decision-making and drug product labeling.
View Article and Find Full Text PDFThis publication summarizes the proceedings and key outcomes of the first day ("Day 1") of the 3-day workshop on "Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development." The overall aims of the workshop were to foster a productive dialog between industry and regulatory agencies and to discuss current strategies toward the development and implementation of clinically relevant dissolution specifications as an integral part of enhanced drug product understanding and effective drug product life-cycle management. The Day 1 podium presentations covered existing challenges and concerns for implementing highly valuable, yet often unique and novel experimental dissolution setups as quality control tools.
View Article and Find Full Text PDFThis publication summarizes the proceedings of day 3 of a 3-day workshop on "Dissolution and Translational Modeling Strategies Enabling Patient-Centric Product Development." Specifically, this publication discusses the current approaches in building clinical relevance into drug product development for solid oral dosage forms, along with challenges that both industry and regulatory agencies are facing in setting clinically relevant drug product specifications (CRDPS) as presented at the workshop. The concept of clinical relevance is a multidisciplinary effort which implies an understanding of the relationship between the critical quality attributes (CQAs) and their impact on predetermined clinical outcomes.
View Article and Find Full Text PDFOn May 15th-17th, 2017, the US FDA and the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) held a workshop at the University of Maryland's Center of Excellence in Regulatory Science and Innovation (M-CERSI), to discuss the role of dissolution testing and translational modeling and simulation in enabling patient-centric solid oral drug product development. This 3-day event was attended by scientists from regulatory agencies, pharmaceutical companies, and academia. The workshop included podium presentations followed by breakout session discussions.
View Article and Find Full Text PDFStochastic deconvolution is a parameter estimation method that calculates drug absorption using a nonlinear mixed-effects model in which the random effects associated with absorption represent a Wiener process. The present work compares (1) stochastic deconvolution and (2) numerical deconvolution, using clinical pharmacokinetic (PK) data generated for an in vitro-in vivo correlation (IVIVC) study of extended release (ER) formulations of a Biopharmaceutics Classification System class III drug substance. The preliminary analysis found that numerical and stochastic deconvolution yielded superimposable fraction absorbed (F) versus time profiles when supplied with exactly the same externally determined unit impulse response parameters.
View Article and Find Full Text PDFIn the past two decades, in vitro in vivo correlation (IVIVC) has been considered an important tool for supporting biowaivers, setting dissolution acceptance criteria, and more recently in the Quality by Design (QbD) framework promoting the establishment of clinically meaningful drug product specifications using dissolution as the endpoint. Based on our review experience at the FDA, for the purposes of this article, we analyzed the current state of regulatory submissions containing IVIVC approaches and discussed the successes and failures from the perspectives of study design to methodology. In the past decade, the overall acceptance rate of the IVIVC submissions is about 40%.
View Article and Find Full Text PDFDissolution profile comparisons are used by the pharmaceutical industry to assess the similarity in the dissolution characteristics of two formulations to decide whether the implemented changes, usually minor/moderate in nature, will have an impact on the in vitro/in vivo performance of the drug product. When similarity testing is applied to support the approval of lower strengths of the same formulation, the traditional approach for dissolution profile comparison is not always applicable for drug products exhibiting strength-dependent dissolution and may lead to incorrect conclusions about product performance. The objective of this article is to describe reasonable biopharmaceutic approaches for developing a biowaiver strategy for low solubility, proportionally similar/non-proportionally similar in composition immediate release drug products that exhibit strength-dependent dissolution profiles.
View Article and Find Full Text PDFThe Nanotechnology Risk Assessment Working Group in the Center for Drug Evaluation and Research (CDER) within the United States Food and Drug Administration was established to assess the possible impact of nanotechnology on drug products. The group is in the process of performing risk assessment and management exercises. The task of the working group is to identify areas where CDER may need to optimize its review practices and to develop standards to ensure review consistency for drug applications that may involve the application of nanotechnology.
View Article and Find Full Text PDF