Publications by authors named "Sandra Stefanovic"

Hundreds of proteins are inserted post-translationally into the endoplasmic reticulum (ER) membrane by a single carboxy-terminal transmembrane domain (TMD). During targeting through the cytosol, the hydrophobic TMD of these tail-anchored (TA) proteins requires constant chaperoning to prevent aggregation or inappropriate interactions. A central component of this targeting system is TRC40, a conserved cytosolic factor that recognizes the TMD of TA proteins and delivers them to the ER for insertion.

View Article and Find Full Text PDF

Hundreds of proteins are anchored in intracellular membranes by a single transmembrane domain (TMD) close to the C terminus. Although these tail-anchored (TA) proteins serve numerous essential roles in cells, components of their targeting and insertion pathways have long remained elusive. Here we reveal a cytosolic TMD recognition complex (TRC) that targets TA proteins for insertion into the ER membrane.

View Article and Find Full Text PDF

African swine fever virus (ASFV) infection leads to rearrangement of vimentin into a cage surrounding virus factories. Vimentin rearrangement in cells generally involves phosphorylation of N-terminal domains of vimentin by cellular kinases to facilitate disassembly and transport of vimentin filaments on microtubules. Here, we demonstrate that the first stage in vimentin rearrangement during ASFV infection involves a microtubule-dependent concentration of vimentin into an "aster" within virus assembly sites located close to the microtubule organizing center.

View Article and Find Full Text PDF

A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membrane-spanning topology of a model TA protein, cytochrome b5 (b5).

View Article and Find Full Text PDF