Publications by authors named "Sandra Soto-Alarcon"

Deficient wound healing is frequently observed in patients diagnosed with diabetes, a clinical complication that compromises mobility and leads to limb amputation, decreasing patient autonomy and family lifestyle. Fibroblasts are crucial for secreting the extracellular matrix (ECM) to pave the wound site for endothelial and keratinocyte regeneration. The biosynthetic pathways involved in collagen production and crosslinking are intimately related to fibroblast redox homeostasis.

View Article and Find Full Text PDF

Scope: Nonalcoholic fatty liver disease (NAFLD) has a high and growing prevalence globally. Mitochondria are fundamental in regulating cell energy homeostasis. Nevertheless, mitochondria control mechanisms can be exceeded in this context of energy overload.

View Article and Find Full Text PDF

Although expresses lactase activity, no clinical trials have determined its impact on lactose-intolerant subjects. This study evaluated whether acute and chronic ingestion of ice creams containing 900791 at high (10 CFU/g) or low (10 CFU/g) concentrations improved lactose tolerance in hypolactasic subjects. Fifty subjects were selected based on a positive lactose (20 g) hydrogen breath test (HBT0) and the presence of digestive symptoms.

View Article and Find Full Text PDF

Background: Nutritional interventions are promising tools for the prevention of obesity. The n-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) docosahexaenoic acid (DHA) modulates immune and metabolic responses while the antioxidant hydroxytyrosol (HT) prevents oxidative stress (OS) in white adipose tissue (WAT).

Objective: The DHA plus HT combined protocol prevents WAT alterations induced by a high-fat diet in mice.

View Article and Find Full Text PDF

Objective: Obesity induced by high-fat diet (HFD) elicits white adipose tissue dysfunction. In this study, we have hypothesized that the metabolic modulator eicosapentaenoic acid (EPA) combined with the antioxidant hydroxytyrosol (HT) attenuates HFD-induced white adipose tissue (WAT) alterations.

Methods: C57BL/6J mice were administered with a HFD (60% fat, 20% protein, 20% carbohydrates) or control diet (CD; 10% fat, 20% protein, 70% carbohydrates), with or without EPA (50 mg/kg/day), HT (5 mg/kg/day), or both for 12 weeks.

View Article and Find Full Text PDF

Objective: Obesity-induced by high-fat diet (HFD) is associated with liver steatosis, oxidative stress and mitochondrial dysfunction, which can be eluded by the co-administration of the lipid metabolism modulator docosahexaenoic acid (DHA) and the antioxidant hydroxytyrosol (HT).

Methods: C57BL/6J mice fed a HFD were orally administered either with vehicle, DHA, HT or DHA+HT for 12 weeks. We measured parameters related to insulin resistance, serum lipid levels, liver fatty acid (FA) content and steatosis score, concomitantly with those associated with mitochondrial energy functions modulated by the transcriptional coactivator PGC-1a.

View Article and Find Full Text PDF

Attenuation of high-fat diet (HFD)-induced liver steatosis is accomplished by different nutritional interventions. Considering that the n-3 PUFA docosahexaenoic acid (DHA) modulates lipid metabolism and the antioxidant hydroxytyrosol (HT) diminishes oxidative stress underlying fatty liver, it is hypothesized that HFD-induced steatosis is suppressed by DHA and HT co-administration. Male C57BL/6J mice were fed a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks, without and with supplementation of DHA (50 mg/kg/day), HT (5 mg/kg/day) or both.

View Article and Find Full Text PDF

Background: White adipose tissue (WAT) have a relevant metabolic and inflammatory function, in overweight or obesity conditions. In this regard, the WAT under over feeding nutrition present a significant increment in oxidative stress, pro-inflammatory status and depletion of n-3 long chain polyunsaturated fatty acid. Hydroxytyrosol (HT) is a polyphenol with important cytoprotective effects, and this molecule can modulate the gene expression, transcription factors and enzymatic activity.

View Article and Find Full Text PDF

Pharmacological therapy for nonalcoholic fatty liver disease (NAFLD) is not approved at the present time. For this purpose, the effect of combined eicosapentaenoic acid (EPA; 50 mg/kg/day) modulating hepatic lipid metabolism and hydroxytyrosol (HT; 5 mg/kg/day) exerting antioxidant actions was evaluated on hepatic steatosis and oxidative stress induced by a high-fat diet (HFD; 60% fat, 20% protein, and 20% carbohydrates) compared to a control diet (CD; 10% fat, 20% protein, and 70% carbohydrates) in mice fed for 12 weeks. HFD-induced liver steatosis (i) was reduced by 32% by EPA, without changes in oxidative stress-related parameters and mild recovery of Nrf2 functioning affording antioxidation and (ii) was decreased by 42% by HT, concomitantly with total regain of the glutathione status diminished by HFD, 42% to 59% recovery of lipid peroxidation and protein oxidation enhanced by HFD, and regain of Nrf2 functioning, whereas (iii) combined EPA + HT supplementation elicited 74% reduction in liver steatosis, with total recovery of the antioxidant potential in a similar manner than HT.

View Article and Find Full Text PDF

Background And Objective: The liver is an organ susceptible to a multitude of injuries that causes liver damage, like steatosis, non-alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, and ischemia-reperfusion injury. Extra virgin olive oil (EVOO), presents several protective effects on the liver, reducing hepatic steatosis, hepatocyte ballooning, fibrogenesis, preventing lipid peroxidation, among other effects. Due to its high levels of monounsaturated fatty acids, mainly oleic acid and phenolic compounds, such as hydroxytyrosol and oleuropein, EVOO is able to participate in the activation of different signaling pathways in the hepatocytes involved in the prevention of inflammation, oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and insulin resistance, allowing the prevention or resolution of liver damage.

View Article and Find Full Text PDF