Publications by authors named "Sandra Shokoples"

Background: A multi-country outbreak of monkeypox virus (MPXV) infections was identified by the World Health Organization in May 2022. The western Canadian province of Alberta identified its first case of MPXV in a returning traveller on June 2, 2022. We undertook a retrospective testing exercise to evaluate whether MPXV may have been circulating in the province earlier.

View Article and Find Full Text PDF

The aim of this study was to assess the prevalence of mutations in Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes among pregnant women using sulfadoxine-pyrimethamine (SP) as an intermittent preventive treatment (IPTp). A molecular epidemiological study of P. falciparum parasite resistance markers to SP was conducted from August 2010 to February 2012 in Mukono district in central Uganda.

View Article and Find Full Text PDF

Patients with Plasmodium vivax malaria are treated with primaquine to prevent relapse infections. We report primaquine failure in a patient with 3 relapses without any possibility of re-infection. Using whole genome sequencing of the relapsing parasite isolates, we identified single nucleotide variants as candidate molecular markers of resistance.

View Article and Find Full Text PDF

In clinical laboratories, diagnosis of imported malaria is commonly performed by microscopy. However, the volume of specimens is generally low and maintaining proficiency in reading blood smears, particularly at the species level, is challenging in this setting. To address this problem, the Provincial Laboratory for Public Health (ProvLab) in Alberta, Canada, implemented real-time PCR for routine confirmation of all smear-positive samples in the province.

View Article and Find Full Text PDF

Malaria is a significant health risk to refugee populations originating from endemic areas, but there is little consensus on screening and/or treatment approaches for malaria in this population. Furthermore, detection of malaria in semi-immune asymptomatic refugees is limited by the sensitivity of diagnostic tests used for screening. We determined the prevalence of malaria by microscopy and real-time polymerase chain reaction (PCR) in a consecutive population of 324 asymptomatic refugees examined in Edmonton, Canada, during 2009-2010.

View Article and Find Full Text PDF

Background: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp.

View Article and Find Full Text PDF

Mutations within the Plasmodium falciparum dihydrofolate reductase gene (Pfdhfr) contribute to resistance to antimalarials such as sulfadoxine-pyrimethamine (SP). Of particular importance are the single nucleotide polymorphisms (SNPs) within codons 51, 59, 108, and 164 in the Pfdhfr gene that are associated with SP treatment failure. Given that traditional genotyping methods are time-consuming and laborious, we developed an assay that provides the rapid, high-throughput analysis of parasite DNA isolated from clinical samples.

View Article and Find Full Text PDF

The implementation of real-time PCR for the diagnosis of malaria has been hampered by poor sensitivity for the detection of mixed infections. We have optimized a method that enhances the sensitivity of detection of minor species in mixed infections within a single multiplex reaction. Our assay uses species-specific forward primers in combination with a conserved reverse primer and largely overcomes primer competition for the minor species DNA.

View Article and Find Full Text PDF

The group B streptococcus (GBS) is an opportunistic bacterial pathogen with the ability to cause invasive disease. While the ability of GBS to invade a number of host-cell types has been clearly demonstrated, the invasion process is not well understood at the molecular level. What has been well established is that modulation of host-cell actin microfilaments is essential for GBS invasion to occur.

View Article and Find Full Text PDF

The group B streptococcus (GBS) is an important human pathogen with the ability to cause invasive disease. To do so, the bacteria must invade host cells. It has been well documented that GBS are able to invade a variety of nonphagocytic host cell types, and this process is thought to involve a number of pathogen-host cell interactions.

View Article and Find Full Text PDF

Group B streptococci (GBS) are opportunistic human pathogens that cause infection and invasive disease in newborns, pregnant women and non-pregnant adults. The internalization of GBS into eukaryotic cells occurs in an actin-microfilament dependent process. The objective of our study was to understand what host cell and/or bacterial factors may be involved in this process.

View Article and Find Full Text PDF

The interactions of group B streptococci (GBS) with HeLa cells (an epithelial cell line) and MRC-5 cells (a fibroblastic cell line) were explored. A host-cell invasion assay using GBS strains from all serotypes revealed that GBS invaded HeLa cells to a greater extent than MRC-5 cells. One strain, a serotype V (NCS13), was highly invasive against HeLa cells.

View Article and Find Full Text PDF