Publications by authors named "Sandra Schorderet-Weber"

In the COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), face masks have become a very important safety measure against the main route of transmission of the virus: droplets and aerosols. Concerns that masks contaminated with SARS-CoV-2 infectious particles could be a risk for self-contamination have emerged early in the pandemic as well as solutions to mitigate this risk. The coating of masks with sodium chloride, an antiviral and non-hazardous to health chemical, could be an option for reusable masks.

View Article and Find Full Text PDF

There is an increasingly urgent call to shift industrial processes from fossil fuel feedstock to sustainable bio-based resources. This change becomes of high importance considering new budget requirements for a carbon-neutral economy. Such a transformation can be driven by traditionally used plants that are able to produce large amounts of valuable biologically relevant secondary metabolites.

View Article and Find Full Text PDF

During the coronavirus disease (COVID-19) pandemic, wearing face masks in public spaces became mandatory in most countries. The risk of self-contamination when handling face masks, which was one of the earliest concerns, can be mitigated by adding antiviral coatings to the masks. In the present study, we evaluated the antiviral effectiveness of sodium chloride deposited on a fabric suitable for the manufacturing of reusable cloth masks using techniques adapted to the home environment.

View Article and Find Full Text PDF

The capillary aerosol generator (CAG) is operated with the principal of thermal liquid evaporation through heating of e-liquid in the initial phase, followed by nucleation and condensation regulated through a mixture of airflow to generate aerosols, such as in an electronic cigarette (EC). The CAG is particularly useful in generating aerosols of large volumes in a continuous manner, for instances such as in vivo inhalation toxicology studies, where usage of ECs is not feasible. The thermal effects of generating aerosol from the CAG are similar in terms of temperature applied in an EC, thus allowing investigators to assess the vapors of e-liquids at scale and reproducibility.

View Article and Find Full Text PDF

Within the traditional pharmacopeia, tobacco (Nicotiana spp.) is often cited as an efficient pesticide. This activity is generally attributed to nicotine, but tobacco plants contain other alkaloids that could potentially contribute to this effect.

View Article and Find Full Text PDF

Vector-borne diseases are responsible for significant health problems in humans, as well as in companion and farm animals. Killing the vectors with ectoparasitic drugs before they have the opportunity to pass on their pathogens could be the ideal way to prevent vector borne diseases. Blocking of transmission might work when transmission is delayed during blood meal, as often happens in ticks.

View Article and Find Full Text PDF

Background: The lungworm Dictyocaulus viviparus, causing parasitic bronchitis in cattle, induces a temporary protective immunity that prevents clinical disease. A radiation-attenuated larvae based vaccine is commercially available in a few European countries, but has the disadvantages of a live vaccine. As a recombinant subunit vaccine would overcome these disadvantages, the parasite's muscle protein paramyosin (PMY) was tested as a recombinant vaccine antigen.

View Article and Find Full Text PDF

Worm infections can cause severe harm and death to both humans and numerous domestic and wild animals. Despite the fact that there are many beneficial worm species, veterinarians, physicians and parasitologists have multiple reasons to combat parasitic worms. The pros and cons of various approaches for the discovery of new control methods are discussed, including novel anthelmintics, vaccines and genetic approaches to identify novel drug and vaccine targets.

View Article and Find Full Text PDF

A new series of amino-acetonitrile derivatives (AAD) have been discovered that exhibit high anthelmintic activity against parasitic nematode species such as Haemonchus contortus and Trichostrongylus colubriformis. Significantly, these compounds also demonstrate activity against nematode strains resistant to the currently available broad-spectrum anthelmintics. The discovery, synthesis, structure-activity relationship and biological results are presented.

View Article and Find Full Text PDF

Anthelmintic resistance in human and animal pathogenic helminths has been spreading in prevalence and severity to a point where multidrug resistance against the three major classes of anthelmintics--the benzimidazoles, imidazothiazoles and macrocyclic lactones--has become a global phenomenon in gastrointestinal nematodes of farm animals. Hence, there is an urgent need for an anthelmintic with a new mode of action. Here we report the discovery of the amino-acetonitrile derivatives (AADs) as a new chemical class of synthetic anthelmintics and describe the development of drug candidates that are efficacious against various species of livestock-pathogenic nematodes.

View Article and Find Full Text PDF