Publications by authors named "Sandra Schordan"

Background/aims: Podocyte differentiation is essential for proper blood filtration in the kidney. It is well known that transcription factors play an essential role to maintain the differentiation of podocytes. The present study is focused on the basic helix-loop-helix (bHLH) transcription factor Tcf21 (Pod1) which is essential for the development of podocytes in vivo.

View Article and Find Full Text PDF

Osteopontin (OPN) expression has been reported to be elevated in experimental models of renal injury such as arterial hypertension or diabetic nephropathy finally leading to focal segmental glomerulosclerosis (FSGS). FSGS is characterized by glomerular matrix deposition and loss or damage of podocytes that represent the main constituents of the glomerular filtration barrier. To evaluate the role of OPN in the kidney we investigated WT and OPN knockout mice (OPN-/-) without treatment, after uninephrectomy (UNX), as well as after UNX and desoxycorticosterone acetate (DOCA)-salt treatment with respect to urine parameters, glomerular morphology, and expression of podocyte markers.

View Article and Find Full Text PDF

Interactions between proteins crucially determine cellular structure and function. Differential analysis of the interactome may help elucidate molecular mechanisms during disease development; however, this analysis necessitates mapping of expression data on protein-protein interaction networks. These networks do not exist for the podocyte; therefore, we built PodNet, a literature-based mouse podocyte network in Cytoscape format.

View Article and Find Full Text PDF

Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or podocytes using FACsorting. By this approach, the morphology of primary glomerular epithelial cells in culture could be resolved: Primary podocytes formed either large cells with intracytoplasmatic extensions or smaller spindle shaped cells, depending on specific culture conditions.

View Article and Find Full Text PDF

Rapidly progressive glomerulonephritis (RPGN) is a life-threatening clinical syndrome and a morphological manifestation of severe glomerular injury that is marked by a proliferative histological pattern ('crescents') with accumulation of T cells and macrophages and proliferation of intrinsic glomerular cells. We show de novo induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in intrinsic glomerular epithelial cells (podocytes) from both mice and humans with RPGN. HB-EGF induction increases phosphorylation of the epidermal growth factor receptor (EGFR, also known as ErbB1) in mice with RPGN.

View Article and Find Full Text PDF

Background: Experimentalists are overwhelmed by high-throughput data and there is an urgent need to condense information into simple hypotheses. For example, large amounts of microarray and deep sequencing data are becoming available, describing a variety of experimental conditions such as gene knockout and knockdown, the effect of interventions, and the differences between tissues and cell lines.

Results: To address this challenge, we developed a method, implemented as a Cytoscape plugin called ExprEssence.

View Article and Find Full Text PDF

Increased mechanical load in podocytes due to glomerular hypertension is one of the important factors leading to podocyte damage and chronic kidney disease. In previous studies, we have shown that mechanical stretch increases osteopontin (OPN) expression in podocytes and that exogenous OPN is mechanoprotective via facilitating cytoskeletal reorganization of podocytes. In the present study, we asked whether the mechanoprotective effect of OPN in podocytes is mediated through specific integrins and whether endogenous OPN of podocytes is required for mechanoprotection.

View Article and Find Full Text PDF

Diabetic nephropathy is one of the most common complications of diabetes mellitus and the leading cause of end-stage renal disease. A reduction in podocyte number has been documented in the kidneys of these patients. To identify the molecular changes in podocytes that are primarily caused by high glucose (HG) concentrations and not by secondary alterations (e.

View Article and Find Full Text PDF