Publications by authors named "Sandra Saenger"

Multivalent interactions at biological interfaces occur frequently in nature and mediate recognition and interactions in essential physiological processes such as cell-to-cell adhesion. Multivalency is also a key principle that allows tight binding between pathogens and host cells during the initial stages of infection. One promising approach to prevent infection is the design of synthetic or semisynthetic multivalent binders that interfere with pathogen adhesion.

View Article and Find Full Text PDF

We investigated in a unique setup of animal models and a human lung explant culture biological properties, including zoonotic potential, of a representative 2016 highly pathogenic avian influenza virus (HPAIV) H5N8, clade 2.3.4.

View Article and Find Full Text PDF

Virus infections induce sensitive antiviral responses within the host cell. The RNA helicase retinoic acid-inducible gene I (RIG-I) is a key sensor of influenza virus RNA that induces the expression of antiviral type I interferons. Recent evidence suggests a complex pattern of RIG-I regulation involving multiple interactions and cellular sites.

View Article and Find Full Text PDF

Influenza A virus (IAV) infections are a major cause for respiratory disease in humans, which affects all age groups and contributes substantially to global morbidity and mortality. IAV have a large natural host reservoir in avian species. However, many avian IAV strains lack adaptation to other hosts and hardly propagate in humans.

View Article and Find Full Text PDF

The RNA-dependent protein kinase (PKR) has broad antiviral activity inducing translational shutdown of viral and cellular genes and is therefore targeted by various viral proteins to facilitate pathogen propagation. The pleiotropic NS1 protein of influenza A virus acts as silencer of PKR activation and ensures high-level viral replication and virulence. However, the exact manner of this inhibition remains controversial.

View Article and Find Full Text PDF

The influenza virus non-structural protein 1 (NS1) is a multifunctional virulence factor that plays a crucial role during infection by blocking the innate antiviral immune response of infected cells. In contrast to the well-studied NS1 protein of influenza A virus, knowledge about structure and functions of the influenza B virus homologue B/NS1, which shares less than 25 % sequence identity, is still limited. Here, we report on a reverse genetic analysis to study the role of a highly conserved class II Src homology 3 domain-binding motif matching the consensus PxxPx(K/R) that we identified at positions 122-127 of the B/NS1 protein.

View Article and Find Full Text PDF