Publications by authors named "Sandra Rondinini"

This work aims at reviewing the most impactful results obtained on the development of Cu-based photocathodes. The need of a sustainable exploitation of renewable energy sources and the parallel request of reducing pollutant emissions in airborne streams and in waters call for new technologies based on the use of efficient, abundant, low-toxicity and low-cost materials. Photoelectrochemical devices that adopts abundant element-based photoelectrodes might respond to these requests being an enabling technology for the direct use of sunlight to the production of energy fuels form water electrolysis (H) and CO reduction (to alcohols, light hydrocarbons), as well as for the degradation of pollutants.

View Article and Find Full Text PDF

Chlorine dioxide (ClO) has been widely used as a disinfectant in drinking water in the past but its effects on water pipes have not been investigated deeply, mainly due to the difficult experimental set-up required to simulate real-life water pipe conditions. In the present paper, four different kinds of water pipes, two based on plastics, namely random polypropylene (PPR) and polyethylene of raised temperature (PERT/aluminum multilayer), and two made of metals, i.e.

View Article and Find Full Text PDF

Energy-dispersive X-ray absorption spectroscopy was applied, aimed at solving the problem of the structure and stability of a copper(II) lactate complex in alkaline solution, used as a precursor for the electrodeposition of CuO. The application of multiple scattering calculations to the simulation of the X-ray absorption near-edge structure part of the spectra allowed an accurate resolution of the structure: the copper(II) cation is surrounded by four lactate ions in a distorted tetrahedral environment, with the lactate anions acting as monodentate ligands. This results in an atomic arrangement where copper is surrounded by four oxygen atoms located at quite a short distance (ca.

View Article and Find Full Text PDF

Electrochemical devices for energy conversion and storage are central for a sustainable economy. The performance of electrodes is driven by charge transfer across different layer materials and an understanding of the mechanistics is pivotal to gain improved efficiency. Here, we directly observe the transfer of photogenerated charge carriers in a photoanode made of hematite (α-FeO) and a hydrous iridium oxide (IrO) overlayer, which plays a key role in photoelectrochemical water oxidation.

View Article and Find Full Text PDF

Light-driven water splitting is one of the most promising approaches for using solar energy in light of more sustainable development. In this paper, a highly efficient p-type copper(II) oxide photocathode is studied. The material, prepared by thermal treatment of CuI nanoparticles, is initially partially reduced upon working conditions and soon reaches a stable form.

View Article and Find Full Text PDF

Three-dimensional printed multi-purpose electrochemical devices for X-ray absorption spectroscopy are presented in this paper. The aim of this work is to show how three-dimensional printing can be a strategy for the creation of electrochemical cells for in situ and in operando experiments by means of synchrotron radiation. As a case study, the description of two cells which have been employed in experiments on photoanodes for photoelectrochemical water splitting are presented.

View Article and Find Full Text PDF

Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO₂ nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed.

View Article and Find Full Text PDF

In this paper, the fixed energy X-ray absorption voltammetry (FEXRAV) is introduced. FEXRAV represents a novel in situ X-ray absorption technique for fast and easy preliminary characterization of electrode materials and consists of recording the absorption coefficient at a fixed energy while varying at will the electrode potential. The energy is chosen close to an X-ray absorption edge, in order to give the maximum contrast between different oxidation states of an element.

View Article and Find Full Text PDF

In this work, IrO(2)-based powders are screened by cyclic voltammetry for the determination of the electrochemical active sites and for the qualitative evaluation of the iridium atoms speciation. All results are obtained using a cavity-microelectrode as powder holder, thus exploiting the features of this innovative tool, whose best potentialities have been recently introduced by our group. All the studied materials have been prepared by the sol-gel technique and differ in calcination temperature and method of mixing the metal oxide precursors.

View Article and Find Full Text PDF

The determination of the number of active sites is a key issue in the evaluation of electrode materials for any electrochemical application. Nonetheless, and particularly in the case of powder materials, a commonly accepted method to determine the actual density of active sites is not yet available, mainly because a method to quantify the amount of material under investigation is missing. In this study, we propose the use of the cavity microelectrode (C-ME, i.

View Article and Find Full Text PDF

Integration of voltammetry, surface-enhanced Raman spectroscopy (SERS), and density functional theory (DFT) has allowed unraveling the mechanistic origin of the exceptional electrocatalytic properties of silver cathodes during the reduction of benzyl chloride. At inert electrodes the initial reduction proceeds through a concerted direct electron transfer yielding a benzyl radical as the first intermediate. Conversely, at silver electrodes it involves an uphill preadsorption of benzyl chloride onto the silver cathode.

View Article and Find Full Text PDF

Aiming to deeply understand the electrocatalytic mechanism of silver on reduction of benzyl chloride, we carried out an in situ electrochemical surface-enhanced Raman spectroscopic study to characterize various surface species in different electrode potential regions. A further analysis with DFT calculation reveals that the benzyl radical and its anionic derivate bonded on a silver electrode are the key intermediates, implying that the pathway could drastically differ from the outer sphere concerted electron reduction at inert electrodes.

View Article and Find Full Text PDF

Oxygen evolution electrocatalysts in acidic media were studied by scanning electrochemical microscopy (SECM) in the substrate generation-tip collection (SG-TC) imaging mode with a 100 microm diam tip. Pure IrO2 and Sn(1-x)Ir(x)O2 combinatorial mixtures were prepared by a sol-gel route to form arrays of electrocatalyst spots. The experimental setup has been developed to optimize screening of electrocatalyst libraries under conditions where the entire array is capable of the oxygen evolution reaction (OER).

View Article and Find Full Text PDF

We report on the effects of self-assembled monolayer (SAM) dilution and thickness on the electron transfer (ET) event for cytochrome c (CytC) electrostatically immobilized on carboxyl terminated groups. We observed biphasic kinetic behavior for a logarithmic dependence of the rate constant on the SAM carbon number (ET distance) within the series of mixed SAMs of C(5)COOH/C(2)OH, C(10)COOH/C(6)OH, and C(15)COOH/C(11)OH that is in overall similar to that found earlier for the undiluted SAM assemblies. However, in the case of C(15)COOH/C(11)OH and C(10)COOH/C(6)OH mixed SAMs a notable increase of the ET standard rate constant was observed, in comparison with the corresponding unicomponent (omega-COOH) SAMs.

View Article and Find Full Text PDF

An ion-channel sensor was demonstrated by immobilizing ETH 1001, an ionophore for ion-selective electrodes, on a gold electrode surface. The approach for preparing the sensor was to incorporate the ionophore into a mixed self-assembled monolayer of 10-mercaptodecanesulfonate and 11-hydroxy-1-undecanethiol formed on the surface. The voltammetric responses for the thus prepared sensor to the primary cation Ca(2+) were observed by using [Fe(CN)(6)](3-/4-) as an electroactive marker.

View Article and Find Full Text PDF

Among the innovative technologies for the detoxification and disposal of industrial effluents, our recently described electroreductive dehalogenation of organic halides on silver electrocatalyst provides a promising route, to be easily "plugged-in" into integrated waste treatments. Although electroreductions do not lead to total substrate mineralization, complete and selective dehalogenation may be achieved by the appropriate choice of the cathode material, thus decreasing the biotoxicity of the waste. In particular the use of silver as electrocatalyst greatly reduces the energy demand, and ensures higher yields and no by-products also when treating highly toxic aromatic halides.

View Article and Find Full Text PDF

pH standardisation procedures in non-aqueous and aqueous-organic solvents are discussed in the light of the newly prepared IUPAC recommendation on measurement of pH in dilute aqueous solutions. Both scientific and metrological aspects are considered, as required by the definitions of primary and secondary methods of measurements recently endorsed by BIPM (Bureau International de Poids et de Mesures, France).

View Article and Find Full Text PDF