Organic diradicals are highly promising candidates as future components in molecular electronic and spintronic devices because of their low spin-orbit coupling. To advance toward final circuit realizations, a thorough knowledge of the behavior of diradicals within a single-molecule junction framework is imperative. In this work, we have measured for the first time the single-molecule conductance of a neutral open-shell diradical compound, a [2,1-] isomer of indenofluorene (IF).
View Article and Find Full Text PDFIn view of the development and the importance that the studies of conductance through molecular junctions is acquiring, robust, reliable and easy-to-use theoretical tools are the most required. Here, we present an efficient implementation of the self-energy correction to density functional theory non-equilibrium Green functions method for TRANSIESTA package. We have assessed the validity of our implementation using as benchmark systems a family of acene complexes with increasing number of aromatic rings and several anchoring groups.
View Article and Find Full Text PDFUnderstanding and controlling electrical conductivity at the single-molecule level is of fundamental importance for the development of new molecular electronic devices. This ideally requires considering the many different options offered by the molecular structure, the nature of the electrodes, and all possible molecule-electrode anchoring configurations, which is experimentally tedious and theoretically very expensive. Here we present a systematic theoretical study of the conductance of di-amino, di-methylthio and di-(4-methylthio)phenyl acenes, from benzene to pentacene, and for all possible distributions of two identical linkers symmetrically placed on opposite sides of the same ring.
View Article and Find Full Text PDFA number of factors contribute to orbital energy alignment with respect to the Fermi level in molecular tunnel junctions. Here, we report a combined experimental and theoretical effort to quantify the effect of metal image potentials on the highest occupied molecular orbital to Fermi level offset, ε, for molecular junctions based on self-assembled monolayers (SAMs) of oligophenylene ethynylene dithiols (OPX) on Au. Our experimental approach involves the use of both transport and photoelectron spectroscopy to extract the offsets, ε and ε, respectively.
View Article and Find Full Text PDFThis work describes the synthesis and properties of a dicyanomethylene-substituted indolo[3,2-b]carbazole diradical ICz-CN. This quinoidal system dimerises almost completely to (ICz-CN) , which contains two long C(sp )-C(sp ) σ-bonds between the dicyanomethylene units. The minor open-shell ICz-CN component in the solid-state mixture was identified by EPR spectroscopy.
View Article and Find Full Text PDFThe single-molecule conductance of a series of BN-acene-like derivatives has been measured by using scanning tunneling break-junction techniques. A strategic design of the target molecules has allowed us to include azaborine units in positions that unambiguously ensure electron transport through both heteroatoms, which is relevant for the development of customized BN-doped nanographenes. We show that the conductance of the anthracene azaborine derivative is comparable to that of the pristine all-carbon anthracene compound.
View Article and Find Full Text PDFWe present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization.
View Article and Find Full Text PDFCurrently, fatty liver represents a serious public health problem in the Western world. In our country, a large amount of food rich in cholesterol is consumed. Cholesterol is an important component in lipid rafts, where many receptors for growth factors are localized, so its functionality could be altered in the presence of high cholesterol concentration.
View Article and Find Full Text PDFIn going from short to large size thienylene-vinylene diferrocenyl cations, the transition from a charge delocalized to a localized state is addressed by resonance Raman spectroscopy and supported by theoretical model chemistry. The shorter members, dimer and tetramer, display conjugated structures near the cyanine limit of bond length equalization as a result of the strong interferrocene charge resonance, producing a full charge delocalized mixed valence system. In the longest octamer, charge resonance vanishes and the cation is localized at the bridge center (the mixed valence property disappears).
View Article and Find Full Text PDFA combination of Raman spectroscopy and density functional theory calculations is used to describe the structural and spectroscopic properties of the different isomeric cations of diferrocenyl quaterthiophenes. Isomerisation of the thienyl β-positions provides site selective oxidation, which gives rise to species that can interconvert by moving the charge over the bridge. The spectroscopic study allows us to describe a sequence of stationary trapped cationic, either ferrocenyl or thienyl, states which constitutes an energy cascade of accessible sites through which the charge transfer can proceed.
View Article and Find Full Text PDFIn this paper we have prepared a new series of oligothiophenes capped with hexyl groups and a variety of strong acceptors, mainly cyanovinyl moieties. An exhaustive analysis of the absorption, photophysical, electrochemical, solid state, nonlinear optical and vibrational properties has been presented guided by theoretical calculations. The investigation is centered on the efficiency of the intramolecular charge transfer (i.
View Article and Find Full Text PDFWe have synthesized several new push-pull oligothiophenes based on the boron dipyrromethene (BODIPY) moiety as the electron acceptor and the more well-known oligothiophenes substituted with N,N-dialkylamino functions to enhance their electron-donor ability. A complete characterization of the electronic properties has been carried out; it consists of their photophysical, electrochemical, and vibrational properties. The compounds have been studied after chemical treatment with acids and after oxidation.
View Article and Find Full Text PDFA family of quinoidal oligothiophenes, from the dimer to the hexamer, with fused bis(butoxymethyl)cyclopentane groups has been extensively investigated by means of electronic and vibrational spectroscopy, electrochemical measurements, and density functional calculations. The latter predict that the electronic ground state always corresponds to a singlet state and that, for the longest oligomers, this state has biradical character that increases with increasing oligomer length. The shortest oligomers display closed-shell quinoidal structures.
View Article and Find Full Text PDFWhat's your role? New oligothiophene-vinylene compounds have been synthesized to study the role of the conjugated chain in two different cases (see scheme; MV=mixed valence). The electronic and molecular structures were analyzed by means of electronic, X-ray photoelectron, and Raman spectroscopy, together with thermo spectroscopy, electrochemistry, and DFT calculations.New oligothiophene-vinylene compounds have been synthesized in order to study the role of the conjugated chain in two different cases: 1) when push-pull action operates between an electron-donor and an electron-acceptor group at the ends of the thiophene-vinylene conjugated chain, and 2) when mixed-valence action is induced by single oxidation of the same chain functionalized at both terminal positions with ferrocene groups leading to competition between the donor groups.
View Article and Find Full Text PDF