Publications by authors named "Sandra Rebuffat"

Article Synopsis
  • The COMET biobank project collects special tissue and blood samples from overweight patients to help with research on insulin sensitivity.
  • They set up a system to make sure all the samples are good quality and that the collection process is done the right way.
  • The results showed that the samples were collected properly, with good quality of DNA, RNA, and tissues, ensuring the project can be used for scientific studies safely.
View Article and Find Full Text PDF
Article Synopsis
  • The study aims to identify a noninvasive method using the triglycerides and glucose (TyG) index as a predictor for nonalcoholic steatohepatitis (NASH) in obese patients, as diagnosing NASH typically requires a liver biopsy.
  • It analyzed 238 obese patients undergoing bariatric surgery, finding a 18.1% prevalence of NASH and a significant association between elevated TyG index levels and the presence of NASH, nonalcoholic fatty liver disease (NAFLD), and advanced fibrosis.
  • The TyG index combined with gamma-glutamyl transferase (GGT) demonstrated strong diagnostic performance for predicting NASH, indicating potential clinical utility for avoiding unnecessary liver biopsies in
View Article and Find Full Text PDF

Constitution of biobank of human tissues requires careful handling and storage of biological material, to guarantee the quality of samples. Tissue preparation is also critical for further applications such as transcriptomic profiling. In this study, our aim was to evaluate the impact of different disruption techniques (FastPrep-24 instrument, GentleMACS dissociator, and syringe/needle) and homogenizing buffers (RLT versus QIAzol) on RNA purity and quality of metabolic tissues (adipose tissues, liver and skeletal muscle) present in the COMET Biobank.

View Article and Find Full Text PDF

Inflammatory factors produced and secreted by adipose tissue, in particular peri-pancreatic adipose tissue (P-WAT), may influence pancreatic β-cell dysfunction. Using the ZDF Rat model of diabetes, we show the presence of infiltrating macrophage (ED1 staining) on pancreatic tissue and P-WAT in the pre-diabetes stage of the disease. Then, when the T2D is installed, infiltrating cells decreased.

View Article and Find Full Text PDF

Close ties have been made among certain nutrients, obesity, type 2 diabetes and circadian clocks. Among nutrients, taurine has been documented as being effective against obesity and type 2 diabetes. However, the impact of taurine on circadian clocks has not been elucidated.

View Article and Find Full Text PDF

Background: Secreted frizzled-related protein 5 (SFRP5) has been linked to obesity. Results are conflicting regarding its association with type 2 diabetes (T2D) in humans. We aimed to investigate circulating SFRP5 in prediabetes and T2D and its potential association with parameters of insulin resistance and beta-cell function.

View Article and Find Full Text PDF

Insulin receptor substrate 2 (IRS2) is a widely expressed protein that regulates crucial biological processes including glucose metabolism, protein synthesis, and cell survival. IRS2 is part of the insulin - insulin-like growth factor (IGF) signaling pathway and mediates the activation of the phosphotidylinositol 3-kinase (PI3K)-Akt and the Ras-mitogen-activated protein kinase (MAPK) cascades in insulin target tissues and in the pancreas. The best evidence of this is that systemic elimination of the Irs2 in mice (Irs2(-/-)) recapitulates the pathogenesis of type 2 diabetes (T2D), in that diabetes arises as a consequence of combined insulin resistance and beta-cell failure.

View Article and Find Full Text PDF

Aims/hypothesis: Comprehensive characterisation of the interrelation between the peripancreatic adipose tissue and the pancreatic islets promises novel insights into the mechanisms that regulate beta cell adaptation to obesity. Here, we sought to determine the main pathways and key molecules mediating the crosstalk between these two tissues during adaptation to obesity by the way of an integrated inter-tissue, multi-platform analysis.

Methods: Wistar rats were fed a standard or cafeteria diet for 30 days.

View Article and Find Full Text PDF

Pancreatic β-cells play a central role in type 2 diabetes (T2D) development, which is characterized by the progressive decline of the functional β-cell mass that is associated mainly with increased β-cell apoptosis. Thus, understanding how to enhance survival of β-cells is key for the management of T2D. The insulin receptor substrate-2 (IRS-2) protein is pivotal in mediating the insulin/IGF signaling pathway in β-cells.

View Article and Find Full Text PDF

Aims/hypothesis: During obesity, the increment in beta cell mass in response to the rising demand for insulin is essential to maintain normal glucose homeostasis. However, the precise cellular and molecular mechanisms involved in beta cell mass plasticity remain poorly understood. The Wnt signalling pathway has been suggested as one possible modulator of beta cell proliferation, which represents the principal process involved in beta cell mass expansion.

View Article and Find Full Text PDF

Pro-inflammatory cytokines such as IL-1β and TNFα are known to affect thyroid function. They stimulate IL-6 secretion and modify epithelium integrity by altering junction proteins. To study the role of cytokines on thyroid epithelia tightness in autoimmune thyroid diseases (AITD), we analyzed the expression profiles of junction proteins (ZO-1, Claudin, JAM-A) and cytokines in human thyroid slices and also investigated the effect of IL-1β on the epithelium integrity in primary cultures of human thyrocytes.

View Article and Find Full Text PDF

In obesity an increase in β-cell mass occurs to cope with the rise in insulin demand. This β-cell plasticity is essential to avoid the onset of hyperglycemia, although the molecular mechanisms that regulate this process remain unclear. This study analyzed the role of adipose tissue in the control of β-cell replication.

View Article and Find Full Text PDF

Context: The PDS gene (SLC26A4) is responsible for Pendred syndrome (PS). Genetic analysis of PDS using Tunisian samples showed evidence for linkage and association with autoimmune thyroid diseases (AITD) emergence. In addition, the PDS gene product, pendrin, was recently identified as a novel autoantigen in Graves' disease (GD) or Hashimoto thyroiditis (HT) patients' sera.

View Article and Find Full Text PDF

Background: We previously demonstrated that the PDS gene is involved in the genetic susceptibility to autoimmune thyroid diseases (AITD) in Tunisia. In the same population, we now investigated the presence of anti-pendrin auto-antibodies (aAbs) in AITD patients' sera.

Methods: Thirty seven Tunisian AITD patients and 19 healthy subjects from families previously linked to the PDS gene, 75 unrelated patients and 20 healthy unrelated subjects were included in our study.

View Article and Find Full Text PDF

Context: Thyroid antibody-dependent cytotoxicity has been reported in autoimmune thyroid disease (AITD). Indeed, the role of thyroperoxidase (TPO) autoantibodies (aAbs) in complement-mediated damage by binding to TPO expressed on the surface of human thyroid cells was demonstrated, whereas their activity in antibody-dependent cell cytotoxicity (ADCC) is not well established.

Objective: The aim of this study was to define the partners involved in antibody and complement-dependent cytotoxicity (CDC) in AITD and characterize which effector cells are involved in cytotoxicity mediated by anti-TPO aAbs using a chromium release assay.

View Article and Find Full Text PDF

Auto-antibodies (aAbs) to thyroid peroxidase (TPO) interact with a restricted immunodominant region (IDR) divided into two overlapping regions A and B. Among the five major regions structuring the IDR/B, regions 210-225, 353-363, 549-563, 713-720 and 766-775, region 353-363 constitutes an important anchor point for the binding of TPO-specific aAbs in sera from Hashimoto's and Graves' patients. We combined site-directed mutagenesis and expression of TPO mutants in stably transfected CHO cells to precisely define the critical residues in that region.

View Article and Find Full Text PDF

Recent studies in the field of autoimmune thyroid diseases have largely focused on the delineation of B-cell auto-epitopes recognized by the main autoantigens to improve our understanding of how these molecules are seen by the immune system. Among these autoantigens which are targeted by autoantibodies during the development of autoimmune thyroid diseases, thyroid peroxidase is a major player. Indeed, high amounts of anti-thyroid peroxidase autoantibodies are found in the sera of patients suffering from Graves' disease and Hashimoto's thyroiditis, respectively hyper and hypothyroidism.

View Article and Find Full Text PDF

Human anti-thyroperoxidase (TPO) autoantibodies (aAbs) are a major hallmark of autoimmune thyroid diseases. Their epitopes are discontinuous and mainly restricted to an immunodominant region (IDR) consisting of two overlapping regions (IDR/A and B). To shed light on the relationship between these regions, we first performed competitive studies using all available reference anti-TPO antibodies.

View Article and Find Full Text PDF

The host cell MAP kinase ERK-2 incorporated within human immunodeficiency virus type 1 particles plays a critical role in virus infectivity by phosphorylating viral proteins. Recently, a fraction of the virus incorporated late (L) domain-containing p6(gag) protein, which has an essential function in the release of viral particles from the cell surface, was reported to be phosphorylated by an unknown virus-associated cellular protein kinase (Muller, B., Patschinsky, T.

View Article and Find Full Text PDF

Autoantibodies (aAbs) to thyroid peroxidase (TPO), the hallmark of autoimmune thyroid disease (AITD), recognize conformational epitopes restricted to an immunodominant region (IDR), divided into two overlapping domains A and B. Despite numerous efforts aimed at localizing the IDR and identifying aAb-interacting residues on TPO, only two critical amino acids, Lys(713) and Tyr(772), have been characterized. Precise and complete delineation of the other residues involved in the IDR remains to be defined.

View Article and Find Full Text PDF