A justification for the likely presence of negative Fukui functions in molecules with small band gaps is given, and a computational study performed to check whether molecules with small band gaps have negative Fukui functions to a chemically significant extent is reported. While regions with negative Fukui functions were observed, significantly negative values for the atom-condensed Fukui functions were not observed.
View Article and Find Full Text PDFNonlocal exchange-correlation energy functionals are constructed using the accurate model exchange-correlation hole for the uniform electron gas developed by Gori-Giorgi and Perdew. The exchange-correlation hole is constrained to be symmetric and normalized, so the resulting functionals can be viewed as symmetrized versions of the weighted density approximation; we call them two-point weighted density approximations. Even without optimization of parameters or functional forms, the exchange-correlation energies for small molecules are competitive with those of the best generalized gradient approximation functionals.
View Article and Find Full Text PDFIn our quest to explore molecules with chemically significant regions where the Fukui function is negative, we explored reactions where the frontier orbital that indicates the sites for electrophilic attack is not the highest occupied molecular orbital. The highest occupied molecular orbital (HOMO) controls the location of the regions where the Fukui function is negative, supporting the postulate that negative values of the Fukui function are associated with orbital relaxation effects and nodal surfaces of the frontier orbitals. Significant negative values for the condensed Fukui function, however, were not observed.
View Article and Find Full Text PDF