Publications by authors named "Sandra Pluczyk"

Cyclic voltammetry (CV) is a technique used in the analysis of organic compounds. When this technique is combined with electron paramagnetic resonance (EPR) or ultraviolet-visible and near-infrared (UV-Vis-NIR) spectroscopies, we obtain useful information such as electron affinity, ionization potential, band-gap energies, the type of charge carriers, and degradation information that can be used to synthesize stable organic electronic devices. In this study, we present electrochemical and spectroelectrochemical methods to analyze the processes occurring in active layers of an organic device as well as the generated charge carriers.

View Article and Find Full Text PDF

Alkoxyamines are heat-labile molecules, widely used as an in situ source of nitroxides in polymer and materials sciences. Here we show that the one-electron oxidation of an alkoxyamine leads to a cation radical intermediate that even at room temperature rapidly fragments, releasing a nitroxide and carbocation. Digital simulations of experimental voltammetry and current-time transients suggest that the unimolecular decomposition which yields the "unmasked" nitroxide (TEMPO) is exceedingly rapid and irreversible.

View Article and Find Full Text PDF

Two low molecular weight electroactive donor-acceptor-donor (DAD)-type molecules are reported, namely naphthalene bisimide (NBI) symmetrically core-functionalized with dithienopyrrole (NBI-(DTP) ) and an asymmetric core-functionalized naphthalene bisimide with dithienopyrrole (DTP) substituent on one side and 2-ethylhexylamine on the other side (NBI-DTP-NHEtHex). Both compounds are characterized by low optical bandgaps (1.52 and 1.

View Article and Find Full Text PDF

In this work, we focus on the formation of different kinds of charge carriers such as polarons and bipolarons upon p-type doping (oxidation) of the organic semiconductor poly(3- hexylthiophene-2,5-diyl) (P3HT). We elucidate the cyclic voltammogram during oxidation of this polymer and present spectroscopic changes upon doping in the UV/Vis/near-IR range as well as in the mid-IR range. In the low-oxidation regime, two absorption bands related to sub-gap transitions appear, one in the UV/Vis range and another one in the mid-IR range.

View Article and Find Full Text PDF