Approximately 71 million people are chronically infected with the hepatitis C virus (HCV), a potentially lethal pathogen. HCV generates oxidative stress correlating with disease severity. HCV proteins increase reactive oxygen species production by stimulating nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity.
View Article and Find Full Text PDFBackground: A sustained virological response (SVR) is the major end point of therapy for chronic hepatitis C virus (HCV) infection. Late relapse of infection is rare and poorly characterized. Three of 103 patients with a SVR treated at the National Institutes of Health had late relapse.
View Article and Find Full Text PDFThe discovery of biomarkers is often performed using high-throughput proteomics-based platforms and is limited to the molecules recognized by a given set of purified and validated antigens or antibodies. Knowledge-based, or systems biology, approaches that involve the analysis of integrated data, predominantly molecular pathways and networks may infer quantitative changes in the levels of biomolecules not included by the given assay from the levels of the analytes profiled. In this study we attempted to use a knowledge-based approach to predict biomarkers reflecting the changes in underlying protein phosphorylation events using Nonalcoholic Fatty Liver Disease (NAFLD) as a model.
View Article and Find Full Text PDFChronic lymphocytic leukemia (CLL) represents 22-30% of all leukemia cases, thus being the most commonly diagnosed form of adult leukemia in the Western world. On a cellular level, the disease progresses due to the prolonged survival of B-cell CLL cells arrested in the G₀ stage of the cell cycle. The current standard treatment for CLL is a combination regimen containing purine analogues and monoclonal antibodies.
View Article and Find Full Text PDFBackground: Patients with biopsy-proven NASH and especially those with fibrosis are at risk for progressive liver disease, emphasizing the clinical importance of developing non-invasive biomarkers for NASH and NASH-related fibrosis.
Aim: This study examines the performance of a new biomarker panel for NASH and NASH-related fibrosis with a combination of clinical and laboratory variables.
Methods: Enrolled patients had biopsy-proven NAFLD.
The progression of nonalcoholic fatty liver disease (NAFLD) has been linked to deregulated exchange of the endocrine signaling between adipose and liver tissue. Proteomic assays for the phosphorylation events that characterize the activated or deactivated state of the kinase-driven signaling cascades in visceral adipose tissue (VAT) could shed light on the pathogenesis of nonalcoholic steatohepatitis (NASH) and related fibrosis. Reverse-phase protein microarrays (RPMA) were used to develop biomarkers for NASH and fibrosis using VAT collected from 167 NAFLD patients (training cohort, N = 117; testing cohort, N = 50).
View Article and Find Full Text PDF