The immunomodulatory prodrug 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720), which acts as an agonist for sphingosine-1-phosphate (S1P) receptors (S1PR) when phosphorylated, is proposed as a novel pain therapeutic. In this study, we assessed FTY720-mediated antinociception in the radiant heat tail-flick test and in the chronic constriction injury (CCI) model of neuropathic pain in mice. FTY720 produced antinociception and antiallodynia, respectively, and these effects were dose-dependent and mimicked by the S1PR1-selective agonist CYM-5442.
View Article and Find Full Text PDFA significant number of patients experience chronic pain and the intractable side effects of currently prescribed pain medications. Recent evidence indicates important pain-modulatory roles for two classes of G-protein-coupled receptors that are activated by endogenous lipid ligands, the endocannabinoid (eCB) and sphingosine-1-phosphate (S1P) receptors, which are widely expressed in both the immune and nervous systems. In the central nervous system (CNS), CB1 cannabinoid and S1P1 receptors are most abundantly expressed and exhibit overlapping anatomical distributions and similar signaling mechanisms.
View Article and Find Full Text PDFBiochem Pharmacol
December 2012
Lysolipids are important mediators of cellular communication in multiple physiological processes. Sphingosine-1-phosphate (S1P) is a major lysolipid in many organs, including the central nervous system (CNS). This commentary discusses recent findings on the role of S1P in regulating pain perception, and highlights advances and challenges in the field.
View Article and Find Full Text PDFIndividuals infected with human immunodeficiency virus-1 who abuse opiates can have a higher incidence of virus-associated neuropathology. Human immunodeficiency virus does not infect neurons, but viral proteins such as transactivator of transcription and glycoprotein 120, originating from infected glia, are neurotoxic. Moreover, functional changes in glial cells that enhance inflammation and reduce trophic support are increasingly implicated in human immunodeficiency virus neuropathology.
View Article and Find Full Text PDFSphingosine-1-phosphate (S1P) is a ubiquitous, lipophilic cellular mediator that acts in part by activation of G-protein-coupled receptor. Modulation of S1P signaling is an emerging pharmacotherapeutic target for immunomodulatory drugs. Although multiple S1P receptor types exist in the CNS, little is known about their function.
View Article and Find Full Text PDFInt Rev Psychiatry
April 2009
Cannabinoids and opioids produce antinociceptive synergy. Cannabinoids such as Delta-9-tetrahydrocannabinol (THC) release endogenous opioids and endocannabinoids such as anandamide (AEA) also alter endogenous opioid tone. Opioids and cannabinoids bind distinct receptors that co-localize in areas of the brain involved with the processing of pain signals.
View Article and Find Full Text PDFLack of involvement of the opioid system with the endocannabinoid, arachidonylethanolamide (anandamide) was possibly due to hydrolysis by fatty acid amide hydrolase (FAAH). Cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597) is an inhibitor of FAAH, increases brain anandamide levels and enhances anandamide-induced antinociception in male ICR mice (25-30 g). The combination of URB597 (10 mg/kg, i.
View Article and Find Full Text PDFWe have previously demonstrated synergy between morphine and Delta(9)-tetrahydrocannabinol (Delta(9)-THC) in the expression of antinociception in acute pain models and in arthritic models of chronic pain. Our data has been extended to include acute pain in both diabetic mice and rats. In diabetic mice, Delta(9)-THC p.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the effects of the gonadal hormones on the opioid receptor protein levels of Freund's adjuvant-treated (arthritic) male and female Lewis rats. Following a paw pressure nociception assay, the midbrain and spinal cord tissues were collected for comparison of mu, delta, and kappa opioid receptor protein levels. The effects of Freund's adjuvant-induced hyperalgesia resulted in significantly decreased nociception thresholds in both males and females, compared to vehicle treated animals in the paw pressure test.
View Article and Find Full Text PDFVoltage-gated L- and N-type calcium channels (VOCs) are implicated in the activity of morphine, but their contribution to the expression of opioid tolerance remains uncertain. L- and N-type VOCs are heteropentamers of alpha(1), alpha(2)delta, beta, and gamma subunits. The alpha(1) subunit forms both the ion pore and the binding site for ligands.
View Article and Find Full Text PDFMorphine and delta9-tetrahydrocannabinol (THC) produce antinociception via mu opioid and cannabinoid CB1 receptors, respectively, located in central nervous system (CNS) regions including periaqueductal gray and spinal cord. Chronic treatment with morphine or THC produces antinociceptive tolerance and cellular adaptations that include receptor desensitization. Previous studies have shown that administration of combined sub-analgesic doses of THC+morphine produced antinociception in the absence of tolerance.
View Article and Find Full Text PDFCannabinoid CB(2) receptors have been implicated in antinociception in animal models of both acute and chronic pain. We evaluated the role both cannabinoid CB(1) and CB(2) receptors in mechanonociception in non-arthritic and arthritic rats. The antinociceptive effect of Delta(9)-tetrahydrocannabinol (Delta(9)THC) was determined in rats following administration of the cannabinoid CB(1) receptor-selective antagonist, SR141716A, the cannabinoid CB(2) receptor-selective antagonist, SR144528, or vehicle.
View Article and Find Full Text PDFWe have shown in past isobolographic studies that a small amount of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) can enhance morphine antinociception in mice. However, previous studies of the Delta(9)-THC/morphine interaction were performed using normal mice or rats and evaluated acute thermal antinociception. Less is known about cannabinoid and opioid interactions involved in mechanical nociception and in chronic inflammatory pain models, such as Freund's complete adjuvant-induced arthritic model.
View Article and Find Full Text PDFThe analgesic and anti-hyperalgesic effects of cannabinoid- and vanilloid-like compounds, plus the fatty acid amide hydrolase (FAAH) inhibitor Cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), and acetaminophen, were evaluated in the phenyl-p-quinone (PPQ) pain model, using different routes of administration in combination with opioid and cannabinoid receptor antagonists. All the compounds tested produced analgesic effects. Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and (R)-(+)-arachidonyl-1'-hydroxy-2'-propylamide ((R)-methanandamide) were active by three routes of administration: i.
View Article and Find Full Text PDFDelta9-tetrahydrocannabinol (delta9-THC) synergizes with morphine and codeine by releasing endogenous opioids. These studies determined 1) the duration of enhancement of morphine and codeine by delta9-THC, 2) the effect of (delta9-THC on the time course of fully efficacious doses of the opioids, 3) restoration of efficacy of morphine and codeine by delta9-THC, and 4) duration of restoration. Sub-active combination doses of delta9-THC/morphine or delta9-THC/codeine are equivalent in duration of action and efficacy to high-dose opioids alone.
View Article and Find Full Text PDFPrevious studies have demonstrated that delta9-tetrahydrocannabinol (THC) enhances the antinociceptive potency of many opioids administered by a variety of different routes of administration. We hypothesized that THC would enhance fentanyl or buprenorphine analgesia via the transdermal route of administration. THC was first demonstrated to enhance opioid antinociception when both drugs were administered parenterally in a hairless guinea pig model using the pin prick test.
View Article and Find Full Text PDFPolyarthritis induced by inoculation with complete Freund's adjuvant alters opioid peptides, but does not affect opioid receptor binding. This study was conducted to measure mu and delta opioid receptor-stimulated G-protein activity in brain and spinal cord of rats 19 days after injection of complete Freund's adjuvant or vehicle. Mu and delta opioid-stimulated [35S]GTPgammaS binding measured autoradiographically in caudate-putamen, medial thalamus and periaqueductal gray was unchanged in polyarthritic rats.
View Article and Find Full Text PDFTolerance develops to the pharmacological effects of Delta9-tetrahydrocannabinoid (THC) following repetitive administration. Adaptations in signaling pathways involved in tolerance to THC-induced behaviors are not understood. The objective of our study was the evaluation of kinase involvement in the expression of tolerance to the above four THC-induced behaviors.
View Article and Find Full Text PDFEur J Pharmacol
June 2004
Our study addressed the hypothesis that spinal release of endogenous opioids underlies Delta9-tetrahydrocannabinol (Delta9-THC)-induced antinociception in Freund's adjuvant-induced arthritic and nonarthritic rats. The paw-pressure test was used to assess the antinociceptive effects of Delta9-THC versus those of morphine, and opioid and cannabinoid receptor-selective antagonists were used to characterize the involved receptors. Cerebrospinal fluid was collected after Delta9-THC injection (i.
View Article and Find Full Text PDFIt has been suggested that the cannabinoid receptor type 1 (CB1), a G protein-coupled receptor, is internalized after agonist binding and activation of the second messenger pathways. It is proposed that phosphorylation enhances the down-regulation of the CB1 receptor, thus contributing to tolerance. Alterations in phosphorylation of proteins in the signal transduction cascade after CB1receptor activation could also alter tolerance to cannabinoids.
View Article and Find Full Text PDFPrevious studies have demonstrated a functional interaction between cannabinoid and opioid systems in the development and expression of morphine tolerance and dependence. In these experiments, we examined the effect of a low oral dose of Delta 9-tetrahydrocannabinol (Delta 9-THC) on the development of oral morphine tolerance and the expression of naloxone-precipitated morphine withdrawal signs of jumping and diarrhea in ICR mice. Chronic treatment with high-dose oral morphine produced a 3.
View Article and Find Full Text PDFThe phosphatidylinositol (PI) cascade plays a pivotal role in mediating behavioral tolerance to the antinociceptive effects of morphine. Earlier we reported that antinociceptive tolerance was completely reversed 30 min after the administration of inhibitors of each step in the PI cascade. The aim of this study was to determine whether injection of a single dose of protein kinase C (PKC) inhibitor would elicit a prolonged reversal of morphine tolerance for up to 24 h.
View Article and Find Full Text PDFCannabinoids have been shown to increase the release of arachadonic acid, whereas nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to decrease the analgesic effects of cannabinoids. We evaluated the antinociceptive effects of chronic administration of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), anandamide (an endogenous cannabinoid), arachadonic acid, ethanolamine, and methanandamide on several NSAIDs via p.o.
View Article and Find Full Text PDF