This study aimed to evaluate if the treatment with metformin affects the morphologic structure, endothelial function, angiogenesis, inflammation and oxidation-responsive pathways in the heart of mice with surgically induced endometriosis. B6CBA/F1 mice (n = 37) were divided into four groups; Sham (S), Metformin (M), Endometriosis (E) and Metformin/Endometriosis (ME). The cross-sectional area of cardiomyocytes was assessed after Hematoxylin-Eosin staining and fibrosis after Picrosirius-Red staining.
View Article and Find Full Text PDFTransthyretin (TTR) binds Aβ peptide, preventing its deposition and toxicity. TTR is decreased in Alzheimer's disease (AD) patients. Additionally, AD transgenic mice with only one copy of the TTR gene show increased brain and plasma Aβ levels when compared to AD mice with both copies of the gene, suggesting TTR involvement in brain Aβ efflux and/or peripheral clearance.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia and now represents 50-70% of total dementia cases. Over the last two decades, transthyretin (TTR) has been associated with AD and, very recently, a novel concept of TTR stability has been established in vitro as a key factor in TTR/amyloid-β (Aβ) interaction. Small compounds, TTR stabilizers (usually non-steroid anti-inflammatory drugs), bind to the thyroxine (T4) central binding channel, increasing TTR tetrameric stability and TTR/Aβ interaction.
View Article and Find Full Text PDFRationale: AMP-activated protein kinase (AMPK) is an important regulator of energy balance and signaling in the heart. Mutations affecting the regulatory γ2 subunit have been shown to cause an essentially cardiac-restricted phenotype of hypertrophy and conduction disease, suggesting a specific role for this subunit in the heart.
Objective: The γ isoforms are highly conserved at their C-termini but have unique N-terminal sequences, and we hypothesized that the N-terminus of γ2 may be involved in conferring substrate specificity or in determining intracellular localization.
Expert Rev Endocrinol Metab
March 2012
Transthyretin (TTR) is a plasma- and cerebrospinal fluid-circulating protein. Besides the primordially attributed systemic role as a transporter molecule of thyroxine (T) and retinol (through the binding to retinol-binding protein [RBP]), TTR has been recognized as a protein with important functions in several aspects of the nervous system physiology. TTR has been shown to play an important role in behavior, cognition, amidated neuropeptide processing and nerve regeneration.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder affecting tens of millions of people worldwide, with women being at greater risk of developing the disease. A growing body of evidence suggests transthyretin (TTR) as an important modulator of AD pathogenesis. Aiming at providing further insight into the potential neuroprotective role of TTR and gender differences in AD, we crossed transgenic AβPPswe/PS1A246E mice with TTR-null mice and investigated both male and female AβPPswe/PS1A246E/TTR+/+, AβPPswe/PS1A246E/TTR+/-, and AβPPswe/PS1A246E/TTR-/- animals for brain amyloid-β (Aβ) levels and deposition.
View Article and Find Full Text PDF