Publications by authors named "Sandra M Troian"

The free surface of molten nanofilms is known to undergo spontaneous formation of periodic protrusions when exposed to a large transverse thermal gradient. Early time measurements of the array pitch and growth rate in polymer melts confirm a formation process based on a long wavelength thermocapillary instability and not electrostatic attraction or acoustic phonon driven growth as previously believed. We find excellent agreement with theoretical predictions provided the nanofilm out-of-plane thermal conductivity is several times larger than bulk, an enhancement suggestive of polymer chain alignment.

View Article and Find Full Text PDF

We provide guidelines for the design and operation of a planar digital nanodispensing system based on thermocapillary actuation. Thin metallic microheaters embedded within a chemically patterned glass substrate are electronically activated to generate and control 2D surface temperature distributions which either arrest or trigger liquid flow and droplet formation on demand. This flow control is a consequence of the variation of a liquid's surface tension with temperature, which is used to draw liquid toward cooler regions of the supporting substrate.

View Article and Find Full Text PDF

Experiments by several groups during the past decade have shown that a molten polymer nanofilm subject to a large transverse thermal gradient undergoes spontaneous formation of periodic nanopillar arrays. The prevailing explanation is that coherent reflections of acoustic phonons within the film cause a periodic modulation of the radiation pressure which enhances pillar growth. By exploring a deformational instability of particular relevance to nanofilms, we demonstrate that thermocapillary forces play a crucial role in the formation process.

View Article and Find Full Text PDF

We investigate the behavior of the slip length in Newtonian liquids subject to planar shear bounded by substrates with mixed boundary conditions. The upper wall, consisting of a homogenous surface of finite or vanishing slip, moves at a constant speed parallel to a lower stationary wall, whose surface is patterned with an array of stripes representing alternating regions of no shear and finite or no slip. Velocity fields and effective slip lengths are computed both from molecular dynamics (MD) simulations and solution of the Stokes equation for flow configurations either parallel or perpendicular to the stripes.

View Article and Find Full Text PDF

The thickness of freely suspended surfactant films during vertical withdrawal and drainage is investigated using laser reflectivity. The withdrawal process conducted at capillary numbers below 10(-3) generates initial film thicknesses in the micrometer range; subsequent thinning is predominantly impelled by capillary and not gravitational forces. Under these conditions, our results show that film thinning above and below the critical micelle concentration (cmc) is well approximated by a power law function in time whose exponents, which range from -0.

View Article and Find Full Text PDF

Thin liquid films driven to spread on homogeneous surfaces by thermocapillarity can undergo frontal breakup and parallel rivulet formation with well-defined wavelength. Previous modal analyses have relieved the well-known divergence in stress that occurs at a moving contact line by matching the front region to a precursor film. Because the linearized disturbance operator is non-normal, a generalized, nonmodal analysis is required to probe film stability at all times.

View Article and Find Full Text PDF

The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles.

View Article and Find Full Text PDF

Frankel's law predicts that the thickness of a Newtonian soap film entrained at small capillary number scales as Ca2/3 provided the bounding surfaces are rigid. Previous studies have shown that soap films containing low concentrations of high molecular weight (Mw) polymer can exhibit strong deviations from this scaling at low Ca, especially for associating surfactant-polymer solutions. We report results of extensive measurements by laser interferometry of the entrained film thickness versus Ca for the associating pair SDS/PEO over a large range in polymer molecular weight.

View Article and Find Full Text PDF

The behavior of the slip length in thin polymer films subject to planar shear is investigated using molecular dynamics simulations. At low shear rates, the slip length extracted from the velocity profiles correlates well with that computed from a Green-Kubo analysis. Beyond chain lengths of about N=10, the molecular weight dependence of the slip length is dominated strongly by the bulk viscosity.

View Article and Find Full Text PDF

We describe the response of an insoluble surfactant monolayer spreading on the surface of a thin liquid film to small disturbances in the film thickness and surfactant concentration. The surface shear stress, which derives from variations in surfactant concentration at the air-liquid interface, rapidly drives liquid and surfactant from the source toward the distal region of higher surface tension. A previous linear stability analysis of a quasi-steady state solution describing the spreading of a finite strip of surfactant on a thin Newtonian film has predicted only stable modes.

View Article and Find Full Text PDF

If the surface of a quiescent thin liquid film is suddenly coated by a patch of surface active material like a surfactant monolayer, the film is set in motion and begins spreading. An insoluble surfactant will rapidly attempt to coat the entire surface of the film thereby minimizing the liquid's surface tension. The shear stress that develops during the spreading process produces a maximum in surface velocity in the region where the moving film meets the quiescent layer.

View Article and Find Full Text PDF

Recent investigations of microfluidic flows have focused on manipulating the motion of very thin liquid films by modulating the surface tension through an applied streamwise temperature gradient. The extent to which the choice of contact line model affects the flow and stability of such thermocapillary-driven films is not completely understood. Regardless of the contact line model used, the linearized disturbance operator corresponding to the evolution of the film height is non-normal, and a generalized non-modal stability analysis is required.

View Article and Find Full Text PDF