The green synthesis of biomaterials is of significant interest as it enables the safe and sustainable preparation of noble metallic nanoparticles for medical applications. Microalgae polysaccharides have received attention due to their outstanding properties such as biocompatibility, biodegradability and low cost. In addition, due to their variety of remarkable biological and physicochemical properties, polysaccharide-based nanoparticles have advantageous features yet to be explored.
View Article and Find Full Text PDFInt J Nanomedicine
December 2018
Background: In nanomedicine, gold nanoparticles (AuNPs) have demonstrated versatile therapeutic efficiencies and, in particular, have been developed for the treatment of various cancers due to their high selectivity in killing cancer, not healthy, cells.
Methods: In this study, AuNPs were conjugated with the cell-penetrating peptide Cys-(Arg)-Asp-Ser (CRRRRRRRRGDS) by direct cross-linking of the cysteine's thiol group to the gold surface and a fibronectin-derived RGD group was also used due to its efficacy toward cancer cell targeting and possible promotion of healthy fibroblast functions.
Results: Ultraviolet-visible absorbance spectrum and transmission electron microscope images of the synthesized peptide-capped AuNPs (PEP-AuNPs) validated the formation of AuNP aggregates.
The use of a VIGS approach to silence the newly characterized apple tree SQS isoforms points out the biological function of phytosterols in plastid pigmentation and leaf development. Triterpenoids are beneficial health compounds highly accumulated in apple; however, their metabolic regulation is poorly understood. Squalene synthase (SQS) is a key branch point enzyme involved in both phytosterol and triterpene biosynthesis.
View Article and Find Full Text PDFCandida guilliermondii is an ascomycetous yeast widely studied due to its clinical importance, biotechnological interest, and biological control potential. During a series of preliminary experiments aiming at optimizing the electroporation procedure of C. guilliermondii cells, we observed that the efficiency of transformation of an ura5 recipient strain with the corresponding dominant marker URA5 was more than a thousand fold higher as compared with the transformation of an ura3 strain with the URA3 wild type allele.
View Article and Find Full Text PDF