With growing environmental concerns over synthetic polymers, natural polymeric materials, such as hemicellulose, are considered a good sustainable alternative. Curaua fibers could be an excellent source of biopolymer as they have a relatively high hemicellulose content (15 wt%) and only a small amount of lignin (7 wt%). In this work, hemicellulose was extracted by an alkaline medium using KOH and the influence of the alkali concentration, temperature, and time was studied.
View Article and Find Full Text PDFTwo major obstacles to utilizing polyhydroxybutyrate (PHB)-a biodegradable and biocompatible polymer-in commercial applications are its low tensile yield strength (<10 MPa) and elongation at break (~5%). In this work, we investigated the modification of the mechanical properties of PHB through the use of a variety of bio-derived additives. Poly(lactic acid) (PLA) and sugarcane-sourced cellulose nanocrystals (CNCs) were proposed as mechanical reinforcing elements, and epoxidized canola oil (eCO) was utilized as a green plasticizer.
View Article and Find Full Text PDFThe environmental and technical feasibility of cellulose nanocrystal production from sugarcane bagasse fibers was evaluated. First, the life cycle assessment (LCA) is presented as a methodology to investigate the most feasible form of obtainment. The environmental impacts regarding climate change and water footprint were evaluated considering a gate-to-gate process and a functional unit of 1kg.
View Article and Find Full Text PDFSugarcane bagasse and straw can be converted into pulps, oils, controlled-release formulations, chelating agents, and composites. This article reviews bagasse and straw conversion efforts in Brazil. Laboratory-scale processes were developed aiming at the integral use of these biomass byprod ucts.
View Article and Find Full Text PDF