Publications by authors named "Sandra M Lechner"

Background: The Na1.8 voltage-gated sodium channel, expressed in peripheral nociceptive neurons, plays a role in transmitting nociceptive signals. The effect of VX-548, an oral, highly selective inhibitor of Na1.

View Article and Find Full Text PDF

In the present article, we report on a strategy to improve the physical properties of a series of small molecule human adenosine 2A (hA2A) antagonists. One of the aromatic rings typical of this series of antagonists is replaced with a series of aliphatic groups, with the aim of disrupting crystal packing of the molecule to lower the melting point and in turn to improve the solubility. Herein, we describe the SAR of a new series of water-soluble 2,4,6-trisubstituted pyrimidines where R1 is an aromatic heterocycle, R2 is a short-chain alkyl amide, and the typical R3 aromatic heterocyclic substituent is replaced with an aliphatic amino substituent.

View Article and Find Full Text PDF

4-Acetylamino-2-(3,5-dimethylpyrazol-1-yl)-pyrimidines bearing substituted pyridyl groups as C-6 substituents were prepared as selective adenosine hA2A receptor antagonists for the treatment of Parkinson's disease. The 5-methoxy-3-pyridyl derivative 6g (hA2A Ki 2.3 nM, hA1 Ki 190 nM) was orally active at 3 mg/kg in a rat HIC model but exposure was poor in nonrodent species, presumably due to poor aqueous solubility.

View Article and Find Full Text PDF

In this report, the strategy and outcome of expanding SAR exploration to improve solubility and metabolic stability are discussed. Compound 35 exhibited excellent potency, selectivity over A(1) and improved solubility of >4 mg/mL at pH 8.0.

View Article and Find Full Text PDF

Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics.

View Article and Find Full Text PDF

A series of N-pyrimidinyl-2-phenoxyacetamide adenosine A(2A) antagonists is described. SAR studies led to compound 14 with excellent potency (K(i) = 0.4 nM), selectivity (A(1)/A(2A) > 100), and efficacy (MED 10 mg/kg p.

View Article and Find Full Text PDF

Previously we have described a series of novel A 2A receptor antagonists with excellent water solubility. As described in the accompanying paper, the antagonists were first optimized to remove an unsubstituted furyl moiety, with the aim of avoiding the potential metabolic liabilities that can arise from the presence of an unsubstituted furan. This effort identified a series of potent and selective methylfuryl derivatives.

View Article and Find Full Text PDF

In this report, the design and synthesis of a series of pyrimidine based adenosine A(2A) antagonists are described. The strategy and outcome of expanding SAR exploration to attenuate hERG and improve selectivity over A(1) are discussed. Compound 33 exhibited excellent potency, selectivity over A(1), and reduced hERG liability.

View Article and Find Full Text PDF

The receptor localization of metabotropic glutamate receptors (mGlu) 2 and 3 was examined by using in situ hybridization and a well-characterized mGlu2-selective antibody in the rat forebrain. mGlu2 was highly and discretely expressed in cell bodies in almost all of the key regions of the limbic system in the forebrain, including the midline and intralaminar structures of the thalamus, the association cortices, the dentate gyrus of the hippocampus, the medial mammillary nucleus, and the lateral and basolateral nuclei of the amygdala. Moreover, presynaptic mGlu2 terminals were found in most of the forebrain structures, especially in the lateral part of the central nucleus of the amygdala, and the CA1 region of the hippocampus.

View Article and Find Full Text PDF

Potent adenosine hA2A receptor antagonists are often accompanied by poor aqueous solubility, which presents issues for drug development. Herein we describe the early exploration of the structure-activity relationships of a lead pyrimidin-4-yl acetamide series to provide potent and selective 2-amino-N-pyrimidin-4-yl acetamides as hA2A receptor antagonists with excellent aqueous solubility. In addition, this series of compounds has demonstrated good bioavailability and in vivo efficacy in a rodent model of Parkinson's disease, despite having reduced potency for the rat A2A receptor versus the human A2A receptor.

View Article and Find Full Text PDF

Currently, the most popular means of assessing functional activity of Gs/olf-coupled receptors is via the measurement of intracellular cyclic adenosine monophosphate (cAMP) accumulation. An additional readout is the downstream phosphorylation of cAMP response element binding protein (CREB), which gives an indication of gene transcription, the ultimate response of many G-protein-coupled receptor (GPCR) signals. Current methods of quantifying CREB phosphorylation are low throughput, and so we have designed a novel higher throughput method using the Odyssey infrared imaging system.

View Article and Find Full Text PDF

Transcriptional profiling was performed to survey the global expression patterns of 20 anatomically distinct sites of the human central nervous system (CNS). Forty-five non-CNS tissues were also profiled to allow for comparative analyses. Using principal component analysis and hierarchical clustering, we were able to show that the expression patterns of the 20 CNS sites profiled were significantly different from all non-CNS tissues and were also similar to one another, indicating an underlying common expression signature.

View Article and Find Full Text PDF

A growing body of evidence suggests that activation of the glutamatergic system, particularly N-methyl-D-aspartate (NMDA) receptor function, may be a viable approach to the treatment of schizophrenia, and potentially other cognitive disorders. The excitotoxicity associated with direct NMDA receptor agonists limits their therapeutic potential, and the glycine modulatory site of the NMDA receptor has received growing interest as a therapeutic target. One approach to enhance NMDA receptor function is to increase the availability of the necessary co-agonist glycine at this modulatory site through inhibition of glycine reuptake from the synapse via glycine transporter-1 (GlyT1).

View Article and Find Full Text PDF

We have previously reported the characterization of a novel immunoglobulin supergene family member, designated class-I MHC-restricted T cell associated molecule (CRTAM). Here we further characterize human CRTAM and find that it is highly expressed in the cerebellum, notably in Purkinje neurons. We identify CRTAM as a new member of the nectin-like (Necls) family and find significant expression of Necl-2 (IGSF4), a protein known to bind CRTAM and another member of the nectin superfamily, in the cerebellum.

View Article and Find Full Text PDF

Voltage-gated calcium channels (VGCCs) play an essential role in controlling neurotransmitter release, neuronal excitability, and gene expression in the nervous system. The distribution of cells that contain mRNAs encoding the auxiliary alpha2delta-1, alpha2delta-2, and alpha2delta-3 subunits of the VGCCs in the central nervous system (CNS) and the dorsal root ganglia (DRG) was examined in rats by using in situ hybridization. Specific labeling of alpha2delta-1, alpha2delta-2, and alpha2delta-3 mRNAs appeared to be largely confined to neurons and was widely, although differentially, distributed in the brain, the spinal cord, and the DRG.

View Article and Find Full Text PDF