Based on knowledge of early embryo development, where anterior neural ectoderm (ANE) development is regulated by native inhibitors of bone morphogenic protein (BMP) and Nodal/Activin signaling, most published protocols of human embryonic stem cell differentiation to ANE have demonstrated a crucial role for Smad signaling in neural induction. The drawbacks of such protocols include the use of an embryoid body culture step and use of polypeptide secreted factors that are both expensive and, when considering clinical applications, have significant challenges in terms of good manufacturing practices compliancy. The use of small molecules to direct differentiation of pluripotent stem cells toward a specified lineage represents a powerful approach to generate specific cell types for further understanding of biological function, for understanding disease processes, for use in drug discovery, and finally for use in regenerative medicine.
View Article and Find Full Text PDFCellular immortalization provides a way for expansion and subsequent molecular characterization of rare cell types. Ideally, immortalization can be achieved by the reversible expression of immortalizing proteins. Here, we describe the use of conditional immortalization based on a modified tetracycline-regulated system for the expression of SV40 large T-antigen in embryonic stem (ES) cells and mice.
View Article and Find Full Text PDFEmbryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the "Functional Genomics in Embryonic Stem Cells" consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools.
View Article and Find Full Text PDFBackground: Histone methylation is thought to be central to the epigenetic mechanisms that maintain and confine cellular identity in multi-cellular organisms. To examine epigenetic roles in cellular homeostasis, we conditionally mutated the histone 3 lysine 4 methyltransferase, Mll2, in embryonic stem (ES) cells, during development and in adult mice using tamoxifen-induced Cre recombination.
Results: In ES cells, expression profiling unexpectedly revealed that only one gene, Magoh2, is dependent upon Mll2 and few other genes were affected.
Epigenetic regulation by histone methyltransferases provides transcriptional memory and inheritable propagation of gene expression patterns. Potentially, the transition from a pluripotent state to lineage commitment also includes epigenetic instructions. The histone 3 lysine 4 methyltransferase Mll2/Wbp7 is essential for embryonic development.
View Article and Find Full Text PDFEpigenesis is the process whereby the daughters of a dividing cell retain a chromatin state determined before cell division. The best-studied cases involve the inheritance of heterochromatic chromosomal domains, and little is known about specific gene regulation by epigenetic mechanisms. Recent evidence shows that epigenesis pivots on methylation of nucleosomes at histone 3 lysines 4, 9 or 27.
View Article and Find Full Text PDF