Publications by authors named "Sandra Lobo"

The aim of this research was to analyze the lifestyles of adults from Spanish-speaking countries in South America during the COVID-19 pandemic using a cross-sectional, analytical, and multicenter study. The target population was composed of people aged 18 and older who resided in South America during the pandemic; the final sample comprised 16,811 participants who were predominantly female, with ages ranging from 18 to 79 years. The results showed that approximately six out of ten respondents did not engage in any physical activity; only one in four respondents indicated that their diet was sufficient and balanced; and most washed their hands frequently and showered every day.

View Article and Find Full Text PDF

Introduction: University students need memory to manage the learning processes based on metacognition and in this way they can respond to future demands as professionals.

Methods: was structured with a quantitative approach, comparative type, non-experimental cross-sectional design, the sample consisted of 237 responses from students.

Results: the age was 26.

View Article and Find Full Text PDF

Lyme disease patients would greatly benefit from a timely, sensitive, and specific molecular diagnostic test that can detect the causal agent Borrelia burgdorferi at the onset of symptoms. Currently available diagnostic methods recommended by the Centers for Disease Control and Prevention for Lyme disease involve indirect serological tests that rely on the detection of a host-antibody response, which often takes more than three weeks to develop. With this process, many positive cases are not detected within a timely manner, preventing a complete cure.

View Article and Find Full Text PDF

Metastatic pancreatic cancer (PC) is an aggressive malignancy, with most patients deriving benefit only from first-line chemotherapy. Increasingly, the recommended treatment for those with a germline mutation in a gene involved in homologous recombination repair is with a platinum drug followed by a poly (ADP-ribose) polymerase (poly adenosine phosphate-ribose polymerase [PARP]) inhibitor. Yet, this is based largely on studies of BRCA1/2 or PALB2 mutated PC.

View Article and Find Full Text PDF

Respiratory complications of rickets may be life-threatening particularly in developing countries. A 7-month-old boy presented with recurrent infections, seizures, failure to thrive, wheezing and respiratory distress progressing to global respiratory failure. Several antimicrobial regimens, bronchodilators and corticosteroids resulted in only short-term improvement.

View Article and Find Full Text PDF

The trafficking of fatty acids into and out of adipocytes is regulated by a complex series of proteins and enzymes and is under control by a variety of hormonal and metabolic factors. The biochemical basis of fatty acid influx, despite its widespread appreciation, remains enigmatic with regard to the biophysical and biochemical properties that facilitate long-chain fatty acid uptake. Fatty acid efflux is initiated by hormonally controlled lipolysis of the droplet stores and produces fatty acids that must transit from their site of production to the plasma membrane and subsequently out of the cells.

View Article and Find Full Text PDF

Fatty acid transport proteins are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. FATP-dependent production of AMP was evaluated using FATP4 proteoliposomes, and fatty acid-dependent activation of AMP-activated protein kinase (AMPK) was assessed in 3T3-L1 adipocytes. Insulin-stimulated fatty acid influx (palmitate or arachidonate) into cultured adipocytes resulted in an increase in the phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase.

View Article and Find Full Text PDF

ACSL1 (acyl-CoA synthetase 1), the major acyl-CoA synthetase of adipocytes, has been proposed to function in adipocytes as mediating free fatty acid influx, esterification, and storage as triglyceride. To test this hypothesis, ACSL1 was stably silenced (knockdown (kd)) in 3T3-L1 cells, differentiated into adipocytes, and evaluated for changes in lipid metabolism. Surprisingly, ACSL1-silenced adipocytes exhibited no significant changes in basal or insulin-stimulated long-chain fatty acid uptake, lipid droplet size, or tri-, di-, or monoacylglycerol levels when compared with a control adipocyte line.

View Article and Find Full Text PDF

Fatty acid influx into adipocytes is a complex multifactoral process driven by biochemical and biophysical processes linking transmembrane flux to the ATP-dependent esterification of fatty acids. Adipocyte proteins implicated in free fatty acid (FFA) influx include CD36 functioning as a general lipid receptor, caveolin 1 functioning as a component of an endocytotic/exocytotic vesicular cycle and the acyl CoA synthetases (FATP1, ACSL1) catalysing esterification of lipids producing acyl CoAs. In adipocytes, CD36, ACSL1 and FATP1 translocate from intracellular sites to the plasma membrane in response to insulin thereby positioning these key proteins to facilitate FFA esterification.

View Article and Find Full Text PDF

The role of fatty acid transport protein 1 (FATP1) and FATP4 in facilitating adipocyte fatty acid metabolism was investigated using stable FATP1 or FATP4 knockdown (kd) 3T3-L1 cell lines derived from retrovirus-delivered short hairpin RNA (shRNA). Decreased expression of FATP1 or FATP4 did not affect preadipocyte differentiation or the expression of FATP1 (in FATP4 kd), FATP4 (in FATP1 kd), fatty acid translocase, acyl-coenzyme A synthetase 1, and adipocyte fatty acid binding protein but did lead to increased levels of peroxisome proliferator-activated receptor gamma and CCAAT/enhancer binding protein alpha. Both FATP1 and FATP4 kd adipocytes exhibited reduced triacylglycerol deposition and corresponding reductions in diacylglycerol and monoacylglycerol levels compared with control cells.

View Article and Find Full Text PDF

Covalent lipid modifications mediate the membrane attachment and biological activity of Ras proteins. All Ras isoforms are farnesylated and carboxyl-methylated at the terminal cysteine; H-Ras and N-Ras are further modified by palmitoylation. Yeast Ras is palmitoylated by the DHHC cysteine-rich domain-containing protein Erf2 in a complex with Erf4.

View Article and Find Full Text PDF

Subcellular localization of Ras proteins to the plasma membrane is accomplished in part by covalent attachment of a farnesyl moiety to the conserved CaaX box cysteine. Farnesylation targets Ras to the endoplasmic reticulum (ER), where additional processing steps occur, resulting in translocation of Ras to the plasma membrane. The mechanism(s) by which this occurs is not well understood.

View Article and Find Full Text PDF

We evaluated the incidence of de novo nonepileptic seizures (NES), confirmed by EEG monitoring, after cranial surgery for intractable epilepsy in 228 surgery patients. Eight patients (3.5%) developed de novo NES at 6 weeks to 6 years (mean, 23 months) after surgery.

View Article and Find Full Text PDF

Ras oncogene proteins are plasma membrane-associated signal transducers that are found in all eukaryotes. Posttranslational addition of lipid to a carboxyl-terminal CaaX box (where "C" represents a cysteine, "a" is generally an aliphatic residue, and X can be any amino acid) is required to target Ras proteins to the cytosolic surface of the plasma membrane. The pathway by which Ras translocates from the endoplasmic reticulum to the plasma membrane is currently not clear.

View Article and Find Full Text PDF

Most Ras proteins are posttranslationally modified by a palmitoyl lipid moiety through a thioester linkage. However, the mechanism by which this occurs is not known. Here, evidence is presented that the Ras2 protein of Saccharomyces cerevisiae is palmitoylated by a Ras protein acyltransferase (Ras PAT) encoded by the ERF2 and ERF4 genes.

View Article and Find Full Text PDF

The cloning, using a PCR approach, of genes from both Streptomyces coelicolor and Streptomyces avermitilis encoding an acyl-CoA dehydrogenase (AcdH), putatively involved in the catabolism of branched-chain amino acids, is reported. The deduced amino acid sequences of both genes have a high similarity to prokaryotic and eukaryotic short-chain acyl-CoA dehydrogenases. When the S.

View Article and Find Full Text PDF