Publications by authors named "Sandra K Villwock"

Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Forkhead Box (FOX) proteins, Fkh1 and Fkh2, regulate diverse cellular processes including transcription, long-range DNA interactions during homologous recombination, and replication origin timing and long-range origin clustering. We hypothesized that, as stimulators of early origin activation, Fkh1 and Fkh2 abundance limits the rate of origin activation genome-wide. Existing methods, however, are not well-suited to quantitative, genome-wide measurements of origin firing between strains and conditions.

View Article and Find Full Text PDF

The initiation, elongation, and termination of DNA replication are each associated with distinct, nonlinear DNA structures that can be resolved and identified by two-dimensional (2D) agarose gel electrophoresis. This method involves: isolation of genomic DNA while preserving fragile replication structures, digestion of the DNA with a restriction enzyme, separation of DNA by size and shape through two distinct stages of agarose gel electrophoresis, and Southern blotting to probe for the specific sequence(s) of interest. The method has been most commonly used to determine the activity level of putative replication origin-containing sequences, and has also been used to analyze replication timing, fork progression, fork pausing, fork stalling and collapse, termination, and recombinational repair.

View Article and Find Full Text PDF

DNA damage slows DNA synthesis at replication forks; however, the mechanisms remain unclear. Cdc7 kinase is required for replication origin activation, is a target of the intra-S checkpoint, and is implicated in the response to replication fork stress. Remarkably, we found that replication forks proceed more rapidly in cells lacking Cdc7 function than in wild-type cells.

View Article and Find Full Text PDF