Publications by authors named "Sandra K Floyd"

Article Synopsis
  • Phylogenetic analyses of bryophytes reveal significant variability in evolutionary relationships among land plants, with some consistency found in a common unrooted tree across studies.
  • Despite their complexity, relationships within mosses, liverworts, and hornworts largely align with previous findings, although the results vary depending on the gene sets analyzed.
  • Examination of the plastid genomes indicates that while structural changes are minimal among bryophytes, some unexpected traits, like the retention of the tufA locus in certain mosses, challenge previous assumptions about plastome evolution.
View Article and Find Full Text PDF

Land plant bodies develop from meristems, groups of pluripotent stem cells, which may persist throughout the life of a plant or, alternatively, have a transitory existence. Early diverging land plants exhibit indeterminate (persistent) growth in their haploid gametophytic generation, whereas later diverging lineages exhibit indeterminate growth in their diploid sporophytic generation, raising the question of whether genetic machinery directing meristematic functions was co-opted between generations. Class III HD-Zip (C3HDZ) genes are required for the establishment and maintenance of shoot apical meristems in flowering plants.

View Article and Find Full Text PDF

Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants.

View Article and Find Full Text PDF

It is commonly believed that gene duplications provide the raw material for morphological evolution. Both the number of genes and size of gene families have increased during the diversification of land plants. Several small proteins that regulate transcription factors have recently been identified in plants, including the LITTLE ZIPPER (ZPR) proteins.

View Article and Find Full Text PDF

Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants.

View Article and Find Full Text PDF

Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages.

View Article and Find Full Text PDF

In seed plants, leaves are born on radial shoots, but unlike shoots, they are determinate dorsiventral organs made of flat lamina. YABBY genes are found only in seed plants and in all cases studied are expressed primarily in lateral organs and in a polar manner. Despite their simple expression, Arabidopsis thaliana plants lacking all YABBY gene activities have a wide range of morphological defects in all lateral organs as well as the shoot apical meristem (SAM).

View Article and Find Full Text PDF

Arabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments: embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development.

View Article and Find Full Text PDF

The fossil record reveals that seed plant leaves evolved from ancestral lateral branch systems. Over time, the lateral branch systems evolved to become determinate, planar and eventually laminar. Considering their evolutionary histories, it is instructive to compare the developmental genetics of shoot apical meristems (SAMs) and leaves in extant seed plants.

View Article and Find Full Text PDF

Leaves and stems are ultimately derived from the shoot apical meristem (SAM); leaves arise from the peripheral zone of the SAM and stem tissue is derived from both the peripheral and central zones of the SAM. Both the peripheral and central regions of the SAM are formed during embryogenesis when the basic body plan of the plant is established. Interplay between points of maximal concentration of auxin and specific patterns of transcription of both auxin-responsive transcription factors and other patterning genes subdivide the embryo along both the apical-basal and central-peripheral axes.

View Article and Find Full Text PDF

As more plant genome sequences become available, researchers are increasingly using comparative genomics to address some of the major questions in plant biology. Such questions include the evolution of photosynthesis and multicellularity, the developmental genetic changes responsible for alterations in body plan, and the origin of important plant innovations such as roots, leaves, and vascular tissue.

View Article and Find Full Text PDF

Vascular plants diverged more than 400 million years ago into two lineages, the lycophytes and the euphyllophytes . Leaf-like organs evolved independently in these two groups . Microphylls in lycophytes are hypothesized to have originated as lateral outgrowths of tissue that later became vascularized (the enation theory) or through the sterilization of sporangia (the sterilization hypothesis) .

View Article and Find Full Text PDF

Land plants underwent tremendous evolutionary change following the divergence of the ancestral lineage from algal relatives. Several important developmental innovations appeared as the embryophyte clade diversified, leading to the appearance of new organs and tissue types. To understand how these changes came about, we need to identify the fundamental genetic developmental programs that are responsible for growth, patterning, and differentiation and describe how these programs were modified and elaborated through time to produce novel morphologies.

View Article and Find Full Text PDF

Asymmetric development of plant lateral organs is initiated by a partitioning of organ primordia into distinct domains along their adaxial/abaxial axis. Two primary determinants of abaxial cell fate are members of the KANADI and YABBY gene families. Progressive loss of KANADI activity in loss-of-function mutants results in progressive transformation of abaxial cell types into adaxial ones and a correlated loss of lamina formation.

View Article and Find Full Text PDF

MicroRNAs are an abundant class of small RNAs that are thought to regulate the expression of protein-coding genes in plants and animals. Here we show that the target sequence of two microRNAs, known to regulate genes in the class-III homeodomain-leucine zipper (HD-Zip) gene family of the flowering plant Arabidopsis, is conserved in homologous sequences from all lineages of land plants, including bryophytes, lycopods, ferns and seed plants. We also find that the messenger RNAs from these genes are cleaved within the same microRNA-binding site in representatives of each land-plant group, as they are in Arabidopsis.

View Article and Find Full Text PDF

Background: Shoots of all land plants have a radial pattern that can be considered to have an adaxial (central)-abaxial (peripheral) polarity. In Arabidopsis, gain-of-function alleles of PHAVOLUTA and PHABULOSA, members of the class III HD-ZIP gene family, result in adaxialization of lateral organs. Conversely, loss-of-function alleles of the KANADI genes cause an adaxialization of lateral organs.

View Article and Find Full Text PDF

Seed dormancy plays an important role in germination ecology and seed plant evolution. Morphological seed dormancy is caused by an underdeveloped embryo that must mature prior to germination. It has been suggested that the presence of an underdeveloped embryo is plesiomorphic among seed plants and that parallel directional change in embryo morphology has occurred separately in gymnosperms and in angiosperms.

View Article and Find Full Text PDF

The extreme isolation and mid-Pacific origin of the Hawaiian archipelago has ensured that all indigenous organisms have arrived via long-distance dispersal or have evolved from successfully colonizing species. Although this isolation has also produced high rates of species endemism in angiosperms (89% or more), that rate in pteridophytes is considerably less (76%). The ratio of native species to the estimated number of original successful colonizing species in angiosperms (3.

View Article and Find Full Text PDF