In humans, sterol 27-hydroxylase (CYP27A1) deficiency leads to cholesterol deposition in tendons and vasculature. Thus, in addition to its role in bile acid synthesis, where it converts cholesterol to 27-hydroxycholesterol (27-OHC), CYP27A1 may also be atheroprotective. Cyp27A1-deficient (Cyp27A1(-/-)) mice were crossed with apolipoprotein E (apoE)-deficient mice.
View Article and Find Full Text PDFThe intracellular availability of glucocorticoids is regulated by the enzymes 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) and 11β-hydroxysteroid dehydrogenase 2 (HSD11B2). The activity of HSD11B1 is measured in the urine based on the (tetrahydrocortisol+5α-tetrahydrocortisol)/tetrahydrocortisone ((THF+5α-THF)/THE) ratio in humans and the (tetrahydrocorticosterone+5α-tetrahydrocorticosterone)/tetrahydrodehydrocorticosterone ((THB+5α-THB)/THA) ratio in mice. The cortisol/cortisone (F/E) ratio in humans and the corticosterone/11-dehydrocorticosterone (B/A) ratio in mice are markers of the activity of HSD11B2.
View Article and Find Full Text PDFBile acids facilitate postprandial absorption of nutrients. Bile acids also activate the farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5 and play a major role in regulating lipid, glucose, and energy metabolism. Transgenic expression of cholesterol 7α-hydroxylase (CYP7A1) prevented high fat diet-induced diabetes and obesity in mice.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2011
In this study we profile free 3-oxo sterols present in plasma from patients affected with the neurodegenerative disorder of sterol and bile acid metabolism cerebrotendinous xanthomatosis (CTX), utilizing a combination of charge-tagging and LC-ESI-MS(n) performed with an LTQ-Orbitrap Discovery instrument. In addition, we profile sterols in plasma from 24-month-old cyp27A1 gene knockout mice lacking the enzyme defective in CTX. Charge-tagging was accomplished by reaction with cationic Girard's P (GP) reagent 1-(carboxymethyl) pyridinium chloride hydrazide, an approach uniquely suited to studying the 3-oxo sterols that accumulate in CTX, as Girard's reagent reacts with the sterol oxo moiety to form charged hydrazone derivatives.
View Article and Find Full Text PDFTransgenic liver-specific inactivation of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) impairs hepatic insulin clearance and causes hyperinsuline-mia, insulin resistance, elevation in hepatic and serum triglyceride levels, and visceral obesity. It also predisposes to nonalchoholic steatohepatitis (NASH) in response to a high-fat diet. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we investigated whether Ceacam1 (gene encoding CEACAM1 protein) null mice with impaired insulin clearance also develop a NASH-like phenotype on a prolonged high-fat diet.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the United States and, indeed, worldwide. It has become a global public health issue. In the United States, the prevalence in the general population is estimated at approximately 20%, while that in the morbidly obese population at approximately 75-92% and in the pediatric population at approximately 13-14%.
View Article and Find Full Text PDFBackground & Aims: Liver-specific inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 causes hyperinsulinemia and insulin resistance, which result from impaired insulin clearance, in liver-specific S503A carcinoembryonic antigen-related cell adhesion molecule 1 mutant mice (L-SACC1). These mice also develop steatosis. Because hepatic fat accumulation precedes hepatitis, lipid peroxidation, and apoptosis in the pathogenesis of nonalcoholic steatohepatitis (NASH), we investigated whether a high-fat diet, by causing inflammation, is sufficient to induce hepatitis and other features of NASH in L-SACC1 mice.
View Article and Find Full Text PDFCellular cholesterol homeostasis is maintained through coordinated regulation of cholesterol synthesis, degradation, and secretion. Nuclear receptors for oxygenated cholesterol derivatives (oxysterols) are known to play key roles in the regulation of cholesterol homeostasis. We recently identified a sulfated oxysterol, 5-cholesten-3beta,25-diol 3-sulfate (25HC3S), that is localized to liver nuclei.
View Article and Find Full Text PDFThe CYP27A gene encodes a mitochondrial cytochrome P450 enzyme, sterol 27-hydroxylase, that is expressed in many different tissues and plays an important role in cholesterol and bile acid metabolism. In humans, CYP27A deficiency leads to cerebrotendinous xanthomatosis. To gain insight into the roles of CYP27A in the regulation of cholesterol and bile acid metabolism, cyp27A gene knockout heterozygous, homozygous, and wild-type littermate mice were studied.
View Article and Find Full Text PDFBackground: Two acyl-coenzyme A:cholesterol acyltransferase (ACAT) genes, ACAT1 and ACAT2, have been identified that encode 2 proteins responsible for intracellular cholesterol esterification.
Methods And Results: In this study, immunohistology was used to establish their cellular localization in human liver biopsies. ACAT2 protein expression was confined to hepatocytes, whereas ACAT1 protein was found in Kupffer cells only.
Inactivation of CEACAM1 in L-SACC1 mice by a dominant-negative transgene in liver impairs insulin clearance and increases serum free fatty acid (FFA) levels, resulting in insulin resistance. The contribution of elevated FFAs in the pathogenesis of insulin resistance is herein investigated. Treatment of L-SACC1 female mice with carnitine restored plasma FFA content.
View Article and Find Full Text PDFWe investigated how cholesterol feeding regulates cholesterol 7alpha-hydroxylase (CYP7A1) via the nuclear receptors farnesoid X receptor (FXR) and liver X receptor alpha (LXRalpha) in New Zealand white rabbits. After 1 day of 2% cholesterol feeding, when the bile acid pool size had not expanded, mRNA levels of the FXR target genes short-heterodimer partner (SHP) and sterol 12alpha-hydroxylase (CYP8B) were unchanged, indicating that FXR activation remained constant. In contrast, the mRNA levels of the LXRalpha target genes ATP binding cassette transporter A1 (ABCA1) and cholesteryl ester transfer protein (CETP) increased 5-fold and 2.
View Article and Find Full Text PDFCholesterol 7alpha-hydroxylase, a rate-limiting enzyme for bile acid synthesis, has been implicated in genetic susceptibility to atherosclerosis. The gene, CYP7A1, encoding a protein with this activity, is expressed normally only in hepatocytes and is highly regulated. Our cyp7A1 gene knockout mouse colony, as young adults on a chow diet, is hypercholesterolemic.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2003
The nuclear receptor PXR (pregnane X receptor) is a broad-specificity sensor that recognizes a wide variety of synthetic drugs and xenobiotic agents. On activation by these compounds, PXR coordinately induces a network of transporters, cytochrome P450 enzymes, and other genes that effectively clear xenobiotics from the liver and intestine. Like PXR, the majority of its target genes also possess a broad specificity for exogenous compounds.
View Article and Find Full Text PDFPrevious studies suggest the hypothesis that apoE produced by adrenocortical cells modulates cellular cholesterol metabolism to enhance the storage of esterified cholesterol (EC) at the expense of cholesterol delivery to the steroidogenic pathway. In the present study, parameters of adrenal cholesterol metabolism and corticosteroid production were examined in wild type and apoE-deficient (apoe(-/-)) mice. Adrenal gland EC content and the EC/free cholesterol (FC) ratio in mice stressed by adrenocorticotropin (ACTH) treatment or saline injection were reduced in apoe(-/-) compared to apoe(+/+) mice.
View Article and Find Full Text PDFWe investigated the roles of hydrophobic deoxycholic acid (DCA) and hydrophilic ursocholic acid (UCA) in the regulation of the orphan nuclear farnesoid X receptor (FXR) in vivo. Rabbits with bile fistula drainage (removal of the endogenous bile acid pool), rabbits with bile fistula drainage and replacement with either DCA or UCA, and intact rabbits fed 0.5% cholic acid (CA) (enlarged endogenous bile acid pool) were studied.
View Article and Find Full Text PDFBile acid synthesis plays a critical role in the maintenance of mammalian cholesterol homeostasis. The CYP7A1 gene encodes the enzyme cholesterol 7alpha-hydroxylase, which catalyzes the initial step in cholesterol catabolism and bile acid synthesis. We report here a new metabolic disorder presenting with hyperlipidemia caused by a homozygous deletion mutation in CYP7A1.
View Article and Find Full Text PDFWe hypothesized that insulin stimulates phosphorylation of CEACAM1 which in turn leads to upregulation of receptor-mediated insulin endocytosis and degradation in the hepatocyte. We have generated transgenic mice over-expressing in liver a dominant-negative, phosphorylation-defective S503A-CEACAM1 mutant. Supporting our hypothesis, we found that S503A-CEACAM1 transgenic mice developed hyperinsulinemia resulting from impaired insulin clearance.
View Article and Find Full Text PDFWe investigated the role of the orphan nuclear receptor farnesoid X receptor (FXR) in the regulation of cholesterol 7alpha-hydroxylase (CYP7A1), using an in vivo rabbit model, in which the bile acid pool, which includes high affinity ligands for FXR, was eliminated. After 7 days of bile drainage, the enterohepatic bile acid pool, in both New Zealand White and Watanabe heritable hyperlipidemic rabbits, was depleted. CYP7A1 activity and mRNA levels increased while FXR was deactivated as indicated by reduced FXR protein and changes in the expression of target genes that served as surrogate markers of FXR activation in the liver and ileum, respectively.
View Article and Find Full Text PDF