Publications by authors named "Sandra K Armstrong"

The incidence of whooping cough due to Bordetella pertussis (BP) infections has increased recently. It is believed that the shift from whole-cell pertussis (wP) vaccines to acellular pertussis (aP) vaccines may be contributing to this rise. While T cells are key in controlling and preventing disease, nearly all knowledge relates to antigens in aP vaccines.

View Article and Find Full Text PDF

The incidence of whooping cough (pertussis), the respiratory disease caused by (BP) has increased in recent years, and it is suspected that the switch from whole-cell pertussis (wP) to acellular pertussis (aP) vaccines may be a contributing factor to the rise in morbidity. While a growing body of evidence indicates that T cells play a role in the control and prevention of symptomatic disease, nearly all data on human BP-specific T cells is related to the four antigens contained in the aP vaccines, and data detailing T cell responses to additional non-aP antigens, are lacking. Here, we derived a full-genome map of human BP-specific CD4+ T cell responses using a high-throughput Activation Induced Marker (AIM) assay, to screen a peptide library spanning over 3000 different BP ORFs.

View Article and Find Full Text PDF

Background: Despite high vaccination rates, the United States has experienced a resurgence in reported cases of pertussis after switching to the acellular pertussis vaccine, indicating a need for improved vaccines that enhance infection control.

Methods: Bordetella pertussis antigens recognized by convalescent-baboon serum and nasopharyngeal wash were identified by immunoproteomics and their subcellular localization predicted. Genes essential or important for persistence in the baboon airway were identified by transposon-directed insertion-site sequencing (TraDIS) analysis.

View Article and Find Full Text PDF

The immune response elicited by the protective whole-cell pertussis (wP) versus the less-protective acellular pertussis (aP) vaccine has been well characterized; however, important clinical problems remain unsolved, as the inability of the currently administered aP vaccine is resulting in the reemergence of clinical disease (i.e., whooping cough).

View Article and Find Full Text PDF

The classical Bordetella species use amino acids as carbon sources and can catabolize organic acids and tricarboxylic acid cycle intermediates. They are also auxotrophic for nicotinamide adenine dinucleotide (NAD) pathway precursors such as nicotinic acid. Bordetellae have a putative nicotinate catabolism gene locus highly similar to that characterized in Pseudomonas putida KT2440.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) is produced via de novo biosynthesis pathways and by salvage or recycling routes. The classical Bordetella bacterial species are known to be auxotrophic for nicotinamide or nicotinic acid. This study confirmed that Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis have the recycling/salvage pathway genes pncA and pncB, for use of nicotinamide or nicotinic acid, respectively, for NAD synthesis.

View Article and Find Full Text PDF

Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B.

View Article and Find Full Text PDF

Pathogens evolve in specific host niches and microenvironments that provide the physical and nutritional requirements conducive to their growth. In addition to using the host as a source of food, bacterial pathogens must avoid the immune response to their presence. The mammalian upper respiratory tract is a site that is exposed to the external environment, and is readily colonized by bacteria that live as resident flora or as pathogens.

View Article and Find Full Text PDF

Bordetella pertussis is the causative agent of whooping cough. This pathogenic bacterium can obtain the essential nutrient iron using its native alcaligin siderophore and by utilizing xeno-siderophores such as desferrioxamine B, ferrichrome, and enterobactin. Previous genome-wide expression profiling identified an iron repressible B.

View Article and Find Full Text PDF

Bordetella pertussis is the bacterial agent of the human disease such as whooping cough. In many bacteria, the extracellular function sigma factor σ is central to the response to envelope stress, and its activity is negatively controlled by the RseA anti-sigma factor. In this study, the role of RseA in B.

View Article and Find Full Text PDF

A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.

View Article and Find Full Text PDF

Bordetella bronchiseptica is a pathogen that can acquire iron using its native alcaligin siderophore system, but can also use the catechol xenosiderophore enterobactin via the BfeA outer membrane receptor. Transcription of bfeA is positively controlled by a regulator that requires induction by enterobactin. Catecholamine hormones also induce bfeA transcription and B.

View Article and Find Full Text PDF

Serological studies of patients with pertussis and the identification of antigenic Bordetella pertussis proteins support the hypothesis that B. pertussis perceives an iron starvation cue and expresses multiple iron source utilization systems in its natural human host environment. Furthermore, previous studies using a murine respiratory tract infection model showed that several of these B.

View Article and Find Full Text PDF

The bacterial respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica employ multiple alternative iron acquisition pathways to adapt to changes in the mammalian host environment during infection. The alcaligin, enterobactin, and heme utilization pathways are differentially expressed in response to the cognate iron source availability by a mechanism involving substrate-inducible positive regulators. As inducers, the iron sources function as chemical signals termed ferrimones.

View Article and Find Full Text PDF

Temporal expression patterns of the Bordetella pertussis alcaligin, enterobactin and haem iron acquisition systems were examined using alcA-, bfeA- and bhuR-tnpR recombinase fusion strains in a mouse respiratory infection model. The iron systems were differentially expressed in vivo, showing early induction of the alcaligin and enterobactin siderophore systems, and delayed induction of the haem system in a manner consistent with predicted changes in host iron source availability during infection. Previous mixed infection competition studies established the importance of alcaligin and haem utilization for B.

View Article and Find Full Text PDF
Article Synopsis
  • * A tonB mutant strain was unable to respond to norepinephrine, indicating that growth stimulation relies on effective outer membrane transport of iron.
  • * Overall, the study reveals that norepinephrine helps B. bronchiseptica acquire iron from transferrin, highlighting a potential mechanism for bacterial pathogens to secure necessary nutrients in the host.
View Article and Find Full Text PDF

Bordetella pertussis, the causative agent of human whooping cough, or pertussis, is an obligate human pathogen with diverse high-affinity transport systems for the assimilation of iron, a biometal that is essential for growth. Under iron starvation stress conditions, B. pertussis produces the siderophore alcaligin.

View Article and Find Full Text PDF

Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are pathogens with a complex iron starvation stress response important for adaptation to nutrient limitation and flux in the mammalian host environment. The iron starvation stress response is globally regulated by the Fur repressor using ferrous iron as the co-repressor. Expression of iron transport system genes of Bordetella is coordinated by priority regulation mechanisms that involve iron source sensing.

View Article and Find Full Text PDF

Ferric enterobactin utilization by Bordetella bronchiseptica and Bordetella pertussis requires the BfeA outer membrane receptor. Under iron-depleted growth conditions, transcription of bfeA is activated by the BfeR regulator by a mechanism requiring the siderophore enterobactin. In this study, enterobactin-inducible bfeA transcription was shown to be TonB independent.

View Article and Find Full Text PDF

Bordetella pertussis, the causative agent of whooping cough or pertussis, is an obligate human pathogen with multiple high-affinity iron transport systems. Maximal expression of the dedicated heme utilization functions encoded by the hurIR bhuRSTUV genes requires an iron starvation signal to relieve Fur repression at the hurIR promoter-operator and an inducing signal supplied by heme for HurI-mediated transcriptional activation at the bhuRSTUV promoter. The BhuR outer membrane receptor protein is required for heme uptake and for heme sensing for induction of bhuRSTUV transcription.

View Article and Find Full Text PDF

Bordetella pertussis and Bordetella bronchiseptica, which are respiratory mucosal pathogens of mammals, produce and utilize the siderophore alcaligin to acquire iron in response to iron starvation. A predicted permease of the major facilitator superfamily class of membrane efflux pumps, AlcS (synonyms, OrfX and Bcr), was reported to be encoded within the alcaligin gene cluster. In this study, alcS null mutants were found to be defective in growth under iron starvation conditions, in iron source utilization, and in alcaligin export.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how Bordetella pertussis and Bordetella bronchiseptica use enterobactin for iron acquisition, highlighting the crucial role of the BfeA receptor.
  • Researchers found that iron-starved bacteria increased BfeA production when enterobactin was added, linked to the regulatory gene bfeR, which stimulates bfeA transcription.
  • Mutants lacking bfeR were less able to grow using enterobactin for iron and showed no increase in bfeA transcription when enterobactin was present, indicating that bfeR is essential for enterobactin-dependent regulation of iron uptake.
View Article and Find Full Text PDF

The Bordetella pertussis heme utilization gene cluster hurIR bhuRSTUV encodes regulatory and transport functions required for assimilation of iron from heme and hemoproteins. Expression of the bhu genes is iron regulated and heme inducible. The putative extracytoplasmic function (ECF) sigma factor, HurI, is required for heme-responsive bhu gene expression.

View Article and Find Full Text PDF

Bordetella pertussis and Bordetella bronchiseptica, gram-negative respiratory pathogens of mammals, possess a heme iron utilization system encoded by the bhuRSTUV genes. Preliminary evidence suggested that expression of the BhuR heme receptor was stimulated by the presence of heme under iron-limiting conditions. The hurIR (heme uptake regulator) genes were previously identified upstream of the bhuRSTUV gene cluster and are predicted to encode homologs of members of the iron starvation subfamily of extracytoplasmic function (ECF) regulators.

View Article and Find Full Text PDF

A previous study found that alcaligin siderophore production by Bordetella bronchiseptica strain RB50 is Bvg repressed. In contrast, we report that alcaligin production by RB50 does not require Bvg phenotypic phase modulation and that isogenic Bvg(Con) and Bvg(-) phase-locked mutants both produce alcaligin in response to iron starvation.

View Article and Find Full Text PDF