Publications by authors named "Sandra Jumpertz"

Hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we inferred significant activation of HIF-1 after oral infection of mice with Salmonella enterica serovar Typhimurium.

View Article and Find Full Text PDF

Activation of the mechanistic target of rapamycin (mTOR) pathway is frequently found in cancer, but mTOR inhibitors have thus far failed to demonstrate significant antiproliferative efficacy in the majority of cancer types. Besides cancer cell-intrinsic resistance mechanisms, it is conceivable that mTOR inhibitors impact on non-malignant host cells in a manner that ultimately supports resistance of cancer cells. Against this background, we sought to analyze the functional consequences of mTOR inhibition in hepatocytes for the growth of metastatic colon cancer.

View Article and Find Full Text PDF

Background: Cancer cachexia represents a central obstacle in medical oncology as it is associated with poor therapy response and reduced overall survival. Systemic inflammation is considered to be a key driver of cancer cachexia; however, clinical studies with anti-inflammatory drugs failed to show distinct cachexia-inhibiting effects. To address this contradiction, we investigated the functional importance of innate immune cells for hepatocellular carcinoma (HCC)-associated cachexia.

View Article and Find Full Text PDF

The hypoxia-inducible transcription factor HIF-1 is appreciated as a promising target for cancer therapy. However, conditional deletion of HIF-1 and HIF-1 target genes in cells of the tumor microenvironment can result in accelerated tumor growth, calling for a detailed characterization of the cellular context to fully comprehend HIF-1's role in tumorigenesis. We dissected cell type-specific functions of HIF-1 for intestinal tumorigenesis by lineage-restricted deletion of the Hif1a locus.

View Article and Find Full Text PDF

The COP9 signalosome (CSN) is a multi-protein complex that is highly conserved in eukaryotes. Due to its regulatory impact on processes such as cell cycle, DNA damage response and apoptosis, the CSN is essential for mammalian cells. One of the best-studied functions of the CSN is the deNEDDylation of cullin-RING ligases (CRLs) via its catalytically active subunit CSN5/JAB1, thereby triggering the degradation of various target proteins.

View Article and Find Full Text PDF

COP9 signalosome subunit 5 (CSN5) plays a decisive role in cellular processes such as cell cycle regulation and apoptosis via promoting protein degradation, gene transcription, and nuclear export. CSN5 regulates cullin-RING-E3 ligase (CRL) activity through its deNEDDylase function. It is overexpressed in several tumor entities, but its role in colorectal cancer (CRC) is poorly understood.

View Article and Find Full Text PDF

CSN5/JAB1 is a critical subunit of the COP9 signalosome (CSN) and is overexpressed in many human cancers, but little is known about the role of CSN5 in colorectal cancer (CRC). To explore the functional role of CSN5 in colorectal tumorigenesis, we applied siRNA technology to silence CSN5 in HeLa, SW480, HCT116, HT29, and CaCo2 cells. CSN5 knock-down led to reduced β-catenin and phospho-bcatenin levels and this was paralleled by reduced CRC cell proliferation and reduced apoptosis rates, whereas the short-term β-catenin protein stability was enhanced by CSN5 knock-down in SW480 cells.

View Article and Find Full Text PDF