Publications by authors named "Sandra Jenatsch"

Whether illumination influences the ion conductivity in lead-halide perovskite solar cells containing iodide halides has been an ongoing debate. Experiments to elucidate the presence of a photoconductive effect require special devices or measurement techniques and neglect possible influences of the enhanced electronic charge concentrations. Here, we assess the electronic-ionic charge transport using drift-diffusion simulations and show that the well-known increase in capacitance at low frequencies under illumination is caused by electronic currents that are amplified due to the screening of the alternating electric field by the ions.

View Article and Find Full Text PDF

Nonstoichiometric nickel oxide (NiO) is one of the very few metal oxides successfully used as hole extraction layer in p-i-n type perovskite solar cells (PSCs). Its favorable optoelectronic properties and facile large-scale preparation methods are potentially relevant for future commercialization of PSCs, though currently low operational stability of PSCs is reported when a NiO hole extraction layer is used in direct contact with the perovskite absorber. Poorly understood degradation reactions at this interface are seen as cause for the inferior stability, and a variety of interface passivation approaches have been shown to be effective in improving the overall solar cell performance.

View Article and Find Full Text PDF

The technique of alloying FA with Cs is often used to promote structural stabilization of the desirable α-FAPbI phase in halide perovskite devices. However, the precise mechanisms by which these alloying approaches improve the optoelectronic quality and enhance the stability have remained elusive. In this study, we advance that understanding by investigating the effect of cationic alloying in CsFAPbI perovskite thin-films and solar-cell devices.

View Article and Find Full Text PDF

Organic semiconductors are a promising material candidate for X-ray detection. However, the low atomic number (Z) of organic semiconductors leads to poor X-ray absorption thus restricting their performance. Herein, the authors propose a new strategy for achieving high-sensitivity performance for X-ray detectors based on organic semiconductors modified with high -Z heteroatoms.

View Article and Find Full Text PDF

Curved X-ray detectors have the potential to revolutionize diverse sectors due to benefits such as reduced image distortion and vignetting compared to their planar counterparts. While the use of inorganic semiconductors for curved detectors are restricted by their brittle nature, organic-inorganic hybrid semiconductors which incorporated bismuth oxide nanoparticles in an organic bulk heterojunction consisting of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C71 butyric acid methyl ester (PC BM) are considered to be more promising in this regard. However, the influence of the P3HT molecular weight on the mechanical stability of curved, thick X-ray detectors remains less well understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on ion redistribution in light-emitting electrochemical cells (LECs), which is crucial for their performance.
  • By using advanced techniques, the researchers successfully mapped ion density in real sandwich-type LEC devices, a first in this field.
  • They discovered that the way ions move during operation significantly affects the local chemical balance and ion concentration within the device layers.
View Article and Find Full Text PDF

We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques.

View Article and Find Full Text PDF

A symmetrical cyanine dye chromophore is modified with different counteranions to study the effect on crystal packing, polarizability, thermal stability, optical properties, light absorbing layer morphology, and organic photovoltaic (OPV) device parameters. Four sulfonate-based anions and the bulky bistriflylimide anion are introduced to the 2-[5-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3-pentadien-1-yl]-1,3,3-trimethyl-3H-indolium chromophore using an Amberlyst A26 (OH form) anion exchanger. Anionic charge distribution clearly correlates with device performance, whereby an average efficiency of 2% was reached in a standard bilayer organic solar.

View Article and Find Full Text PDF

Efficient light detection in the near-infrared (NIR) wavelength region is central to emerging applications such as medical imaging and machine vision. An organic upconverter (OUC) consists of a NIR-sensitive organic photodetector (OPD) and an visible organic light-emitting diode (OLED), connected in series. The device converts NIR light directly to visible light, allowing imaging of a NIR scene in the visible.

View Article and Find Full Text PDF

Tinted and colour-neutral semitransparent organic photovoltaic elements are of interest for building-integrated applications in windows, on glass roofs or on facades. We demonstrate a semitransparent organic photovoltaic cell with a dry-laminated top electrode that achieves a uniform average visible transmittance of 51% and a power conversion efficiency of 3%. The photo-active material is based on a majority blend composed of a visibly absorbing donor polymer and a fullerene acceptor, to which a selective near-infrared absorbing cyanine dye is added as a minority component.

View Article and Find Full Text PDF

The color changes in chemo- and photochromic MoO used in sensors and in organic photovoltaic (OPV) cells can be traced back to intercalated hydrogen atoms stemming either from gaseous hydrogen dissociated at catalytic surfaces or from photocatalytically split water. In applications, the reversibility of the process is of utmost importance, and deterioration of the layer functionality due to side reactions is a critical challenge. Using the membrane approach for high-pressure XPS, we are able to follow the hydrogen reduction of MoO thin films using atomic hydrogen in a water free environment.

View Article and Find Full Text PDF

A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%.

View Article and Find Full Text PDF

Cyanine dyes are fluorescent organic salts with intrinsic conductivity for ionic and electronic charges. Recently ( J. Am.

View Article and Find Full Text PDF

Ultrafast optical probing of the electric field by means of Stark effect in planar heterojunction cyanine dye/fullerene organic solar cells enables one to directly monitor the dynamics of free electron formation during the dissociation of interfacial charge transfer (CT) states. Motions of electrons and holes is scrutinized separately by selectively probing the Stark shift dynamics at selected wavelengths. It is shown that only charge pairs with an effective electron-hole separation distance of less than 4 nm are created during the dissociation of Frenkel excitons.

View Article and Find Full Text PDF

Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity.

View Article and Find Full Text PDF

Organic photodetectors are interesting for low cost, large area optical sensing applications. Combining organic semiconductors with discrete absorption bands outside the visible wavelength range with transparent and conductive electrodes allows for the fabrication of visibly transparent photodetectors. Visibly transparent photodetectors can have far reaching impact in a number of areas including smart displays, window-integrated electronic circuits and sensors.

View Article and Find Full Text PDF

Small organic semiconducting molecules assembling into supramolecular J- and H- aggregates have attracted much attention due to outstanding optoelectronic properties. However, their easy and reproducible fabrication is not yet sufficiently developed for industrial applications, except for silver halide photography. Here we present a method based on aggregate precipitation during the phase separation and dewetting of the evaporating dye precursor solution.

View Article and Find Full Text PDF