Amorphous solid dispersions (ASDs) represent an important formulation technique to achieve supersaturation in gastrointestinal fluids and to enhance absorption of poorly water-soluble drugs. Drug release from such systems is complex due to emergence of different colloidal structures and potential drug precipitation, which can occur in parallel to absorption. The latter drug uptake from the intestinal lumen can be simulated by an organic layer in a biphasic in vitro test, which was employed in this work to mechanistically study the release of ketoconazole from ASDs produced by hot melt extrusion using different HPMCAS grades.
View Article and Find Full Text PDFSolid dispersions (SDs) represent an important formulation technique to achieve supersaturation in gastro-intestinal fluids and to enhance absorption of poorly water-soluble drugs. Extensive research was leading to a rather good understanding of SDs in the dry state, whereas the complex interactions in aqueous medium are still challenging to analyze. This paper introduces a fluorescence quenching approach together with size-exclusion chromatography to study drug and polymer interactions that emerge from SDs release testing in aqueous colloidal phase.
View Article and Find Full Text PDFObjectives: This review highlights aspects of drug hydrophobicity and lipophilicity as determinants of different oral formulation approaches with specific focus on enabling formulation technologies. An overview is provided on appropriate formulation selection by focussing on the physicochemical properties of the drug.
Key Findings: Crystal lattice energy and the octanol-water partitioning behaviour of a poorly soluble drug are conventionally viewed as characteristics of hydrophobicity and lipophilicity, which matter particularly for any dissolution process during manufacturing and regarding drug release in the gastrointestinal tract.
Objectives: Solubility parameters have been used for decades in various scientific fields including pharmaceutics. It is, however, still a field of active research both on a conceptual and experimental level. This work addresses the need to review solubility parameter applications in pharmaceutics of poorly water-soluble drugs.
View Article and Find Full Text PDFObjectives: Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition.
View Article and Find Full Text PDF