Publications by authors named "Sandra J Hewett"

Background: System x (Sx) is an important heteromeric amino acid cystine/glutamate exchanger that plays a pivotal role in the CNS by importing cystine into cells while exporting glutamate. Although certain behaviors have been identified as altered in Sx null mutant mice, our understanding of the comprehensive impact of Sx on behavior remains incomplete.

Methods: To address this gap, we compared motor, sensory and social behaviors of male and female mice in mice null for Sx (SLC7A11) with wildtype littermates (SLC7A11) in a comprehensive and systematic manner to determine effects of genotype, sex, age, and their potential interactions.

View Article and Find Full Text PDF

Understanding the mechanisms underlying ischemic brain injury is of importance to the goal of devising novel therapeutics for protection and/or recovery. Previous work in our laboratory and in others has shown that activation of cystine/glutamate antiporter, system x (Sx ), facilitates neuronal injury in several models of energy deprivation. However, studies on the contribution of this antiporter to ischemic brain damage are more limited.

View Article and Find Full Text PDF

Disruption of Interleukin-1β (IL-1β) signaling sensitized mice to convulsant stimuli, suggesting that this quintessential cytokine of the innate immune system contributes to maintenance of the innate seizure threshold (ST). However, much remains unknown about where and how IL-1β secretion occurs in the normal brain. This study examined the possibility that neurons of the hippocampus are key sources of constitutive IL-1β secretion and that the release from these cells is dependent on the purinoceptor, P2X7.

View Article and Find Full Text PDF

System x (Sx ) is a heteromeric antiporter (L-cystine/L-glutamate exchanger) expressed predominately on astrocytes in the central nervous system. Its activity contributes importantly to the maintenance of the ambient extracellular glutamate levels, as well as, to cellular redox homeostasis. Since alterations in glutamate levels and redox modifications could cause structural changes, we analyzed gross regional morphology of thionin-stained brain sections and cellular and subcellular morphology of Golgi-Cox stained layer V pyramidal neurons in the primary motor cortex (PM1) of mice naturally null for SLC7A11 (SLC7A11 )-the gene that encodes the substrate specific light chain (xCT) for Sx .

View Article and Find Full Text PDF

An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g.

View Article and Find Full Text PDF

Active and passive transporters constitute a gene family of approximately 2000 members. These proteins are required for import and export across the blood brain barrier, clearance of neurotransmitters, inter-cellular solute transfer, and transport across the membranes of subcellular organelles. Neurologic, neurodevelopmental, and psychiatric diseases have been linked to alterations in function and/or mutations in every one of these types of transporters, and many of the transporters are targeted by therapeutics.

View Article and Find Full Text PDF

System x is a heterodimeric amino acid antiporter that, in the central nervous system, is best known for linking the import of L-cystine (CySS) with the export of L-glutamate for the production and maintenance of cellular glutathione (GSH) and extracellular glutamate levels, respectively. Yet, mice that are null for system x are healthy, fertile, and, morphologically, their brains are grossly normal. This suggests other glutamate and/or cyst(e)ine transport mechanisms may be upregulated in compensation.

View Article and Find Full Text PDF

Objective: Although the cystine/glutamate antiporter System x (Sx ) plays a permissive role in glioma-associated seizures, its contribution to other acquired epilepsies has not been determined. As such, the present study investigates whether and how Sx contributes to the pentylenetetrazole (PTZ) chemical kindling model of epileptogenesis.

Methods: Male Sx null () mice and their wild-type littermates were administered PTZ (i.

View Article and Find Full Text PDF

Interleukin-1β (IL-1β), a key cytokine that drives neuroinflammation in the Central Nervous System (CNS), is enhanced in many neurological diseases/disorders. Although IL-1β contributes to and/or sustains pathophysiological processes in the CNS, we recently demonstrated that IL-1β can protect cortical astrocytes from oxidant injury in a glutathione (GSH)-dependent manner. To test whether IL-1β could similarly protect neurons against oxidant stress, near pure neuronal cultures or mixed cortical cell cultures containing neurons and astrocytes were exposed to the organic peroxide, tert-butyl hydroperoxide (t-BOOH), following treatment with IL-1β or its vehicle.

View Article and Find Full Text PDF

Objective: Studies have addressed the potential involvement of L-12/15-lipoxygenases (LOs), a polyunsaturated fatty acid metabolizing enzyme, in experimental models of acute stroke and chronic neurodegeneration; however, none to our knowledge has explored its role in epilepsy development. Thus, this study characterizes the cell-specific expression of L-12/15 -LO in the brain and examines its contribution to epileptogenesis.

Methods: L-12/15-LO messenger RNA (mRNA) and protein expression and activity were characterized via polymerase chain reaction (PCR), immunocytochemistry and enzyme-linked immunosorbent assay (ELISA), respectively.

View Article and Find Full Text PDF

Considerable evidence supports a contributory role for leukocyte-type 12/15 Lipoxygenase (L-12/15 LO) in mediating hippocampal and cortical neuronal injury in models of Alzheimer's disease and stroke. Whether L-12/15 LO contributes to neuronal injury in a model of Huntington's disease (HD) has yet to be determined. HD is characterized by marked striatal neuronal loss, which can be mimicked in humans and animals by inhibition of mitochondrial complex II using 3-Nitropropionic acid (3-NP).

View Article and Find Full Text PDF

Burgeoning evidence supports a role for cyclooxygenase metabolites in regulating membrane excitability in various forms of synaptic plasticity. Two cyclooxygenases, COX-1 and COX-2, catalyze the initial step in the metabolism of arachidonic acid to prostaglandins. COX-2 is generally considered inducible, but in glutamatergic neurons in some brain regions, including the cerebral cortex, it is constitutively expressed.

View Article and Find Full Text PDF

System xc(-) is a heteromeric amino acid cystine/glutamate antiporter that is constitutively expressed by cells of the CNS, where it functions in the maintenance of intracellular glutathione and extracellular glutamate levels. We recently determined that the cytokine, IL-1β, increases the activity of system xc(-) in CNS astrocytes secondary to an up-regulation of its substrate-specific light chain, xCT, and that this occurs, in part, at the level of transcription. However, an in silico analysis of the murine xCT 3'-UTR identified numerous copies of adenine- and uridine-rich elements, raising the possibility that undefined trans-acting factors governing mRNA stability and translation may also contribute to xCT expression.

View Article and Find Full Text PDF

The astrocyte cystine/glutamate antiporter (system xc(-)) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc(-) expression nor activity underlies the excitotoxic effects of aglycemia.

View Article and Find Full Text PDF

T cell infiltration into the CNS is a significant underlying pathogenesis in autoimmune inflammatory demyelinating diseases. Several lines of evidence suggest that glutamate dysregulation in the CNS is an important consequence of immune cell infiltration in neuroinflammatory demyelinating diseases; yet, the causal link between inflammation and glutamate dysregulation is not well understood. A major source of glutamate release during oxidative stress is the system Xc(-) transporter; however, this mechanism has not been tested in animal models of autoimmune inflammatory demyelination.

View Article and Find Full Text PDF

Astrocytes produce and export the antioxidant glutathione (GSH). Previously, we found that interleukin-1β (IL-1β) enhanced the expression of astrocyte system xc (-) , the transporter that delivers the rate-limiting substrate for GSH synthesis-cyst(e)ine. Herein, we demonstrate directly that IL-1β mediates a time-dependent increase in extracellular GSH levels in cortical astrocyte cultures, suggesting both enhanced synthesis and export.

View Article and Find Full Text PDF

Acute inflammation is a self-limiting, complex biological response mounted to combat pathogen invasion, to protect against tissue damage, and to promote tissue repair should it occur. However, unabated inflammation can be deleterious and contribute to injury and pathology. Interleukin-1β (IL-1β), a prototypical "pro-inflammatory" cytokine, is essential to cellular defense and tissue repair in nearly all tissues.

View Article and Find Full Text PDF

The antiporter system x(c)(-) imports the amino acid cystine, the oxidized form of cysteine, into cells with a 1:1 counter-transport of glutamate. It is composed of a light chain, xCT, and a heavy chain, 4F2 heavy chain (4F2hc), and, thus, belongs to the family of heterodimeric amino acid transporters. Cysteine is the rate-limiting substrate for the important antioxidant glutathione (GSH) and, along with cystine, it also forms a key redox couple on its own.

View Article and Find Full Text PDF

Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation) is initiated by glutamate extruded from astrocytes via system xc---an amino acid transporter that imports L-cystine and exports L-glutamate. Specifically, we find that depriving mixed cortical cell cultures of glucose for up to 8 h injures neurons, but not astrocytes.

View Article and Find Full Text PDF

Astrocytes produce numerous mediators under conditions of inflammation in the central nervous system. One such mediator is nitric oxide (NO) derived from nitric oxide synthase-2 (NOS-2), the high output, inducible NOS isoform. Expression of NOS-2 and production of NO can be stimulated in astrocyte cultures by combinations of cytokines and lipopolysaccharide, a gram-negative bacterial endotoxin.

View Article and Find Full Text PDF

Microglia, resident phagocytic cells of the central nervous system, are frequent contaminants of astrocyte cultures. Unfortunately and not always fully appreciated, contamination by microglia can confound results of studies designed to elucidate the molecular mechanisms underlying astrocyte-specific responses. The paradigm described herein employs the mitotic inhibitor, cytosine β-D: -arabinofuranoside, followed by the lysosomotropic agent, leucine methylester, to maximally deplete microglia, thereby generating highly enriched astrocyte monolayers that remain viable and functional.

View Article and Find Full Text PDF

The function of endogenous interleukin-1β (IL-1β) signaling in acute seizure activity was examined using transgenic mice harboring targeted deletions in the genes for either IL-1β (Il1b) or its signaling receptor (Il1r1). Acute epileptic seizure activity was modeled using two mechanistically distinct chemoconvulsants, kainic acid (KA) and pentylenetetrazole (PTZ). KA-induced seizure activity was more severe in homozygous null (-/-) Il1b mice compared to their wild-type (+/+) littermate controls, as indicated by an increase in the incidence of sustained generalized convulsive seizure activity.

View Article and Find Full Text PDF

Hypoxic preconditioning reprogrammes the brain's response to subsequent H/I (hypoxia-ischaemia) injury by enhancing neuroprotective mechanisms. Given that astrocytes normally support neuronal survival and function, the purpose of the present study was to test the hypothesis that a hypoxic preconditioning stimulus would activate an adaptive astrocytic response. We analysed several functional parameters 24 h after exposing rat pups to 3 h of systemic hypoxia (8% O2).

View Article and Find Full Text PDF

Purpose: The goal of this study was to determine whether prophylactic prandial administration of rofecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, could alter seizure generation, kindling acquisition, and/or kindling maintenance in the mouse pentylenetetrazole (PTZ) epilepsy model.

Methods: Male CD-1 mice were fed ad libitum with control chow or chow formulated to deliver 30 mg/kg/day rofecoxib. After 5 days, mice were treated with a single dose of 40 or 55 mg/kg PTZ (acute paradigm) or 40 mg/kg PTZ delivered daily (kindling paradigm).

View Article and Find Full Text PDF