Discovery of a highly selective, potent, and safe non-carboxylic acid, non-hydantoin inhibitor of aldose reductase (AR) capable of potently blocking the excess glucose flux through the polyol pathway that prevails under diabetic conditions has been a long-standing challenge. In response, we did high-throughput screening of our internal libraries of compounds and identified 6-phenylsulfonylpyridazin-2H-3-one, 8, which showed modest inhibition of AR, both in vitro and in vivo. Initial structure-activity relationships concentrated on phenyl substituents and led to 6-(2,4-dichlorophenylsulfonyl)-2H-pyridazin-3-one, 8l, which was more potent than 8, both in vitro and in vivo.
View Article and Find Full Text PDFWe report here on the discovery path that led to a structurally unprecedented non-hydantoin, non-carboxylic acid aldose reductase inhibitor, 24, which shows remarkably potent oral activity in normalizing elevated sorbitol levels and, more significantly, fructose levels in the sciatic nerve of chronically diabetic rats, with ED(90) values of 0.8 and 3 mpk, respectively. It is well absorbed in rats (oral bioavailability, 98%) and has a long plasma t(1/2) (26 +/- 3 h).
View Article and Find Full Text PDF