Publications by authors named "Sandra Inwentarz"

During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration.

View Article and Find Full Text PDF

Since 2018, important changes in the treatment of drug-resistant tuberculosis have been produced in the light of new evidence. The discovery of new anti-tuberculosis drugs, such as bedaquiline and nitroimidazopirane derivatives, as well as the use of repurposed drugs, led to international organizations to recommend new, totally oral, treatment regimens for mono-resistant and multidrug-resistant tuberculosis, leaving aside the prolonged use of injectables, with their inherent toxicity and discomfort. Some definitions of drug-resistant tuberculosis have changed.

View Article and Find Full Text PDF

Coronavirus disease has disrupted tuberculosis services globally. Data from 33 centers in 16 countries on 5 continents showed that attendance at tuberculosis centers was lower during the first 4 months of the pandemic in 2020 than for the same period in 2019. Resources are needed to ensure tuberculosis care continuity during the pandemic.

View Article and Find Full Text PDF

The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity.

View Article and Find Full Text PDF

The human CD14(+) monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16(+) monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated.

View Article and Find Full Text PDF