Publications by authors named "Sandra Helena Uneda-Trevisoli"

The late embryogenesis abundant proteins (LEAPs) are a class of noncatalytic, intrinsically disordered proteins with a malleable structure. Some LEAPs exhibit a protein and/or membrane binding capacity and LEAP binding to various targets has been positively correlated with abiotic stress tolerance. Regarding the LEAPs' presumptive role in protein protection, identifying client proteins (CtPs) to which LEAPs bind is one practicable means of revealing the mechanism by which they exert their function.

View Article and Find Full Text PDF

Soybean has a recognized narrow genetic base that often makes it difficult to visualize available genetic and phenotypic variability and identify superior genotypes during the selection process. However, the phenotypic expression of soybean plants is highly affected by photoperiod and the cultivation of a given variety is performed in the latitude range that presents ideal conditions for its development based on its relative maturity group (RMG) for the optimization of the phenotypic expression of its genotype. Based on the above, this study aimed to evaluate the efficiency of artificial neural networks (ANNs) as a tool for the correct discrimination and classification of tropical soybean genotypes according to their relative maturity group during the population selection process with the aim of optimizing the phenotypic performance of these selected genotypes.

View Article and Find Full Text PDF

The intrinsically disordered proteins belonging to the LATE EMBRYOGENESIS ABUNDANT protein (LEAP) family have been ascribed a protective function over an array of intracellular components. We focus on how LEAPs may protect a stress-susceptible proteome. These examples include instances of LEAPs providing a shield molecule function, possibly by instigating liquid-liquid phase separations.

View Article and Find Full Text PDF